Advertisement

Blood-CSF-barrier permeability in tuberculous meningitis and its association with clinical, MRI and inflammatory cytokines

      Highlights

      • The patients with TBM have mild to moderate blood-CSF-barrier permeability.
      • Qalb correlated with CSF cells and intrathecal synthesis of TNF-α.
      • The TBM patients with exudates on MRI had higher Qalb.
      • Qalb was not associated with severity of meningitis and 6 months outcome.
      • Anti-inflammatory drugs or TNF-α blocker may reduce CSF permeability, needs future study.

      Abstract

      Blood -cerebrospinal fluid-barrier (BCB) disruption in tuberculous meningitis (TBM) may be mediated by inflammatory cytokines, and may determine clinico-radiological severity and outcome. We report BCB permeability in TBM and its relationship with inflammatory cytokines (TNF-α, IL-1β and IL-6), clinical severity, MRI changes and outcome. 55 TBM patients with a median age of 26 years were included. Their clinical, cerebrospinal fluid (CSF) and MRI findings were noted. The severity of meningitis was graded into stages I to III. Cranial MRI was done, and the presence of exudates, granuloma, hydrocephalus and infarctions was noted. BCB permeability was assessed by a ratio of CSF albumin to serum albumin (Qalb). The concentration of TNF-α, IL-1β and IL-6 in CSF were measured by cytokine bead array. The Qalb in the patients was more than the mean + 2.5 SD of controls. In TBM, Qalb correlated with TNF- α (r = 0.47; p = 0.01), CSF cells (r = 0.29; p = 0.02) and exudate on MRI (0.18 ± 0.009 Vs 0.13 ± 0.008; p = 0.04). There was however no association of Qalb with demographic variables, stage, tuberculoma, infarction and hydrocephalus. At 6 months, 11(20%) died, 10(18.2%) had poor and 34(61.8%) had a good recovery.
      BCB permeability in TBM correlated with TNF-α, CSF pleocytosis and exudates but not with severity of meningitis and outcome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arditi M.
        • Manogue K.R.
        • Caplan M.
        • Yogev R.
        Cerebrospinal fluid cachectin/tumor necrosis factor-a and platelet-activating factor concentrations and severity of bacterial meningitis in children.
        J. Infect. Dis. 1990; 162: 139-147
        • Bamforth S.D.
        • Lightman S.
        • Greenwood J.
        The effect of TNF alpha and IL-6 on the permeability of the rat blood-retinal barrier in vivo.
        Acta Neuropathol. 1996; 91: 624-632
        • Bechmann I.
        • Galea I.
        • Perry V.H.
        What is the bloodbrain barrier (not)?.
        Trends Immunol. 2007; 28: 5-11
        • Bonita Ruth
        • Robert Beaglehole
        Recovery of Motor Function after Stroke Stroke.
        19.12. 1988: 1497-1500
        • British Medical Research Council
        Streptomycin in tuberculosis trials committee: streptomycin treatment of tuberculous meningitis.
        Lancet. 1948; 1: 582-596
        • Chodobski A.
        • Zink B.J.
        • Szmydynger-Chodobska J.
        Blood-brain barrier pathophysiology in traumatic brain injury.
        Transl. Stroke Res. 2011; 2: 492-516
        • Cuturi Me
        • Murphy M.
        • Costa-Giomi M.P.
        • Weinmann R.
        • Perussia B.
        • Trinchieri G.
        Independent regulation of tumour necrosis factor and Iymphotoxin production by human peripheral blood lymphocytes.
        J. Exp. Med. 1987; 165: 1581-1594
        • Davson H.
        Formation and drainage of the cerebrospinal fluid.
        Sci. Basis Med. Ann. Rev. 1966; : 238-259
        • Duchini A.
        • Govindarajan S.
        • Santucci M.
        • Zampi G.
        • Hofman F.M.
        Effects of tumor necrosis factor-alpha and interleukin-6 on fluid phase permeability and ammonia diffusion in CNS-derived endothelial cells.
        J. Investig. Med. 1996; 44: 474-482
        • Engelhardt B.
        • Sorokin L.
        The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction.
        Semin. Immunopathol. 2009; 31: 497-511
        • Galea I.
        • Perry V.H.
        The blood-brain interface: a culture change.
        Brain Behav. Immun. 2018; 68: 11-16
        • Gambhir S.
        • Kumar M.
        • Ravina M.
        • Bhoi S.K.
        • Kalita J.
        • Misra U.K.
        Role of 18F-FDG PET in demonstrating disease burden in patients with tuberculous meningitis.
        J. Neurol. Sci. 2016; 370: 196-200
        • Giulian D.
        • Shih LC Baker T.J.
        • Lachman L.B.
        Interleukin I of the central nervous system is produced by ameboid microglia.
        J. Exp. Med. 1986; 164: 594-604
        • IBM Corp. Released
        IBM SPSS Statistics for Windows, Version 20.0.
        IBM Corp, Armonk, NY2011
        • Kalita J.
        • Misra U.K.
        • Ranjan P.
        Predictors of long-term neurological sequelae of tuberculous meningitis: a multivariate analysis.
        Eur. J. Neurol. 2007; 14: 33-37
        • Kalita J.
        • Misra U.K.
        • Prasad S.
        • Bhoi S.K.
        Safety and efficacy of levofloxacin versus rifampicin in tuberculous meningitis: an open-label randomized controlled trial.
        J. Antimicrob. Chemother. 2014; 69: 2246-2251
        • Kalita J.
        • Prasad S.
        • Misra U.K.
        Predictors of paradoxical tuberculoma in tuberculous meningitis.
        Int. J. Tubercul. Lung Disease. 2014; 18: 486-491
        • Kalita J.
        • Pandey P.C.
        • Shukla R.
        • Haldar R.
        Predictors of fever response in tuberculous meningitis: a clinical, MRI and biomarker study.
        Eur. J. Clin. Investig. 2022; 52e13701
        • Le J.
        • Vilcek J.
        Tumor necrosis factor and interleukin I: cytokines with multiple overlapping biological activities.
        Lab. Investig. 1987; 56: 234-248
        • Liddelow S.A.
        • Dziegielewska K.M.
        • Ek C.J.
        • Johansson P.A.
        • Potter A.M.
        • Saunders N.R.
        Cellular transfer of macromolecules across the developing choroid plexus of Monodelphis domestica.
        Eur. J. Neurosci. 2009; 29: 253-266
        • Mailankody S.
        • Dangeti G.V.
        • Soundravally R.
        • Joseph N.M.
        • Mandal J.
        • Dutta T.K.
        • Kadhiravan T.
        Cerebrospinal fluid matrix metalloproteinase 9 levels, blood-brain barrier permeability, and treatment outcome in tuberculous meningitis.
        PLoS One. 2017; 12e0181262
        • Misra U.K.
        • Kalita J.
        • Maurya P.K.
        Stroke in tuberculous meningitis.
        J. Neurol. Sci. 2011. 2011; 303: 22-30
        • Ramilo O.
        • Sáez-Llorens X.
        • Mertsola J.
        • Jafari H.
        • Olsen K.D.
        • Hansen E.J.
        • Yoshinaga M.
        • Ohkawara S.
        • Nariuchi H.
        • McCracken Jr., G.H.
        Tumor necrosis factor alpha/cachectin and interleukin 1 beta initiate meningeal inflammation.
        J. Exp. Med. 1990; 172: 497-507
        • Raviglione M.C.
        • Snider Jr., D.E.
        • Kochi A.
        Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic.
        JAMA. 1995; 273: 220-226
        • Reiber H.
        The discrimination between different blood-CSF barrier dysfunctions and inflammatory reactions of the CNS by a recent evaluation graph for the protein profile of cerebrospinal fluid.
        J. Neurol. 1980; 224: 89-99
        • Rosenberg G.A.
        Neurological diseases in relation to the blood-brain barrier.
        J. Cereb. Blood Flow Metab. 2012; 32: 1139-1151
        • Schliep G.
        • Felgenhauer K.
        Serum-CSF protein gradients, the blood-GSF barrier and the local immune response.
        J. Neurol. 1978; 218: 77-96
        • Segal Malcolm B.
        The choroid plexuses and the barriers between the blood and the cerebrospinal fluid.
        Cell. Mol. Neurobiol. 2000; 20: 183-196
        • Sellner J.
        • Leib S.L.
        In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP-1 ratio and increased collagen type IV degradation.
        Neurobiol. Dis. 2006; 21: 647-656
        • Sharief M.K.
        • Ciardi M.
        • Thompson E.J.
        Blood-brain barrier damage in patients with bacterial meningitis: association with tumor necrosis factor-α but not interleukin-Iβ.
        J. Infect. Dis. 1992; 166: 350-358
        • Shih R.Y.
        • Koeller K.K.
        Bacterial, fungal, and parasitic infections of the central nervous system: radiologic-pathologic correlation and historical perspectives.
        Radiographics. 2015; 35: 1141-1169
        • Tang J.
        • An Y.
        • Liao Y.
        • Li Y.
        • Li L.
        • Wang L.
        The association between blood-cerebrospinal fluid barrier dysfunction and the therapeutic effect in tuberculous meningitis patients.
        Eur. Neurol. 2014; 71: 331-336
        • Teasdale Graham
        • Bryan Jennett
        Assessment of coma and impaired consciousness: a practical scale.
        Lancet. 1974; 304: 81-84
        • Thwaites G.
        • Chau T.T.
        • Mai N.T.
        • Drobniewski F.
        • McAdam K.
        • Farrar J.
        Tuberculous meningitis.
        J. Neurol. Neurosurg. Psychiatry. 2000; 68: 289-299
        • Thwaites G.E.
        • Simmons C.P.
        • Than Ha Quyen N.
        • Thi Hong Chau T.
        • Phuong Mai P.
        • Thi Dung N.
        • Hoan Phu N.
        • White N.P.
        • Tinh Hien T.
        • Farrar J.J.
        Pathophysiology and prognosis in vietnamese adults with tuberculous meningitis.
        J. Infect. Dis. 2003; 188: 1105-1115
        • Tibbling G.
        • Link H.
        • Ohman S.
        Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values.
        Scand. J. Clin. Lab. Invest. 1977; 37: 385-390
        • Tracey K.J.
        • Vlassara H.
        • Cerami A.
        Cachectin/tumour necrosis factor.
        Lancet. 1989; 1: 1122-1125
        • van der Flier M.
        • Hoppenreijs S.
        • van Rensburg A.J.
        • Ruyken M.
        • Kolk A.H.
        • Springer P.
        • Hoepelman A.I.
        • Geelen S.P.
        • Kimpen J.L.
        • Schoeman J.F.
        Vascular endothelial growth factor and blood-brain barrier disruption in tuberculous meningitis.
        Pediatr. Infect. Dis. J. 2004; 23: 608-613
        • Waage A.
        • Halstensen A.
        • Espevik T.
        Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease.
        Lancet. 1987; 1: 355-357
        • Wang J.T.
        • Hung C.C.
        • Sheng W.H.
        • Wang J.Y.
        • Chang S.C.
        • Luh K.T.
        Prognosis of tuberculous meningitis in adults in the era of modern antituberculous chemotherapy.
        J. Microbiol. Immunol. Infect. 2002; 35: 215-222
        • World Health Organization
        Global Tuberculosis Report.
        2021 edition. 2021