Advertisement
Short Communication| Volume 364, 577810, March 15, 2022

Download started.

Ok

Serum levels of lipocalin-2 are elevated at early times in African American relapsing remitting multiple sclerosis patients

      Highlights

      • A SNP in the gene STK11 which codes for LKB1 is a risk factor for MS in women.
      • LKB1 deficiency increases inflammatory proteins including LCN-2 and OPN.
      • LCN2 and OPN levels are higher in African American female MS patients with the SNP.
      • Higher levels were seen after short, but not long, disease duration times.
      • Elevated LCN2/OPN levels may contribute to increased MS risk due to the STK11 SNP.

      Abstract

      Previous studies showed that depleting Liver Kinase-B1 (LKB1) from astrocytes increased inflammatory factors lipocalin-2 (LCN2) and osteopontin (OPN) in EAE. A single nucleotide polymorphism (SNP) in STK11 (encoding LKB1) is a risk factor for MS, suggesting increased LCN2 or OPN contributes to risk. Serum LCN2 and OPN levels in African American female MS patients were higher than healthy controls, and while levels increased with disease duration in cases without the SNP, levels decreased with duration in cases with the SNP. Increased MS risk associated with the STK11 SNP may be due to higher LCN2 or OPN levels at early times.

      Abbreviations:

      ACP (Acclerated Cure Project), CIS (Clinically isolated syndrome), EAE (experimental autoimmune encephalomyelitis), HC (healthy control), ILR (, interval since last relapse), LCN2 (lipocalin-2), LKB1 (liver kinase B1), NGAL (neutrophil gelatinase associated lipocalin), OPN (osteopontin), SC (symptomatic control), SNP (single nucleotide polymorphism), STK11 (serine threonine kinase 11), WT (wild type)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Agah E.
        • Zardoui A.
        • Saghazadeh A.
        • Ahmadi M.
        • et al.
        Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: a systematic review and meta-analysis.
        PLoS One. 2018; 13e0190252
        • Al-Nimer F.
        • Elliott C.
        • Bergman J.
        • Khademi M.
        • et al.
        Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination.
        Neurol. Neuroimmunol. Neuroinflamm. 2016; 3e191
        • Al-Temaimi R.
        • AbuBaker J.
        • Al-Khairi I.
        • Alroughani R.
        Remyelination modulators in multiple sclerosis patients.
        Exp. Mol. Pathol. 2017; 103: 237-241
        • Berard J.L.
        • Zarruk J.G.
        • Arbour N.
        • Prat A.
        • et al.
        Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis.
        Glia. 2012; 60: 1145-1159
        • Bi F.
        • Huang C.
        • Tong J.
        • Qiu G.
        • et al.
        Reactive astrocytes secrete lcn2 to promote neuron death.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 4069-4074
        • Boggio E.
        • Dianzani C.
        • Gigliotti C.L.
        • Soluri M.F.
        • et al.
        Thrombin cleavage of osteopontin modulates its activities in human cells in vitro and mouse experimental autoimmune encephalomyelitis in vivo.
        J Immunol Res. 2016; 2016: 9345495
        • Boullerne A.I.
        • Skias D.
        • Hartman E.M.
        • Testai F.D.
        • et al.
        A single-nucleotide polymorphism in serine-threonine kinase 11, the gene encoding liver kinase B1, is a risk factor for multiple sclerosis.
        ASN Neuro. 2015; 7
        • Boullerne A.I.
        • Wallin M.T.
        • Culpepper W.J.
        • Maloni H.
        • et al.
        Liver kinase B1 rs9282860 polymorphism and risk for multiple sclerosis in White and Black Americans.
        Mult. Scler Relat. Disord. 2021; 55103185
        • Braitch M.
        • Nunan R.
        • Niepel G.
        • Edwards L.J.
        • et al.
        Increased osteopontin levels in the cerebrospinal fluid of patients with multiple sclerosis.
        Arch. Neurol. 2008; 65: 633-635
        • Cao Y.
        • Li H.
        • Liu H.
        • Zheng C.
        • et al.
        The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression.
        Cell Res. 2010; 20: 99-108
        • Cappellano G.
        • Vecchio D.
        • Magistrelli L.
        • Clemente N.
        • et al.
        The yin-Yang of osteopontin in nervous system diseases: damage versus repair.
        Neural Regen. Res. 2021; 16: 1131-1137
        • Chabas D.
        • Baranzini S.E.
        • Mitchell D.
        • Bernard C.C.
        • et al.
        The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease.
        Science. 2001; 294: 1731-1735
        • Choi J.
        • Lee H.W.
        • Suk K.
        Increased plasma levels of lipocalin 2 in mild cognitive impairment.
        J. Neurol. Sci. 2011; 305: 28-33
        • Chun B.Y.
        • Kim J.H.
        • Nam Y.
        • Huh M.I.
        • et al.
        Pathological involvement of astrocyte-derived lipocalin-2 in the demyelinating optic neuritis.
        Invest. Ophthalmol. Vis. Sci. 2015; 56: 3691-3698
        • Clemente N.
        • Comi C.
        • Raineri D.
        • Cappellano G.
        • et al.
        Role of anti-osteopontin antibodies in multiple sclerosis and experimental autoimmune encephalomyelitis.
        Front. Immunol. 2017; 8: 321
        • Comabella M.
        • Pericot I.
        • Goertsches R.
        • Nos C.
        • et al.
        Plasma osteopontin levels in multiple sclerosis.
        J. Neuroimmunol. 2005; 158: 231-239
        • Dekens D.W.
        • Naude P.J.W.
        • Keijser J.N.
        • Boerema A.S.
        • et al.
        Lipocalin 2 contributes to brain iron dysregulation but does not affect cognition, plaque load, and glial activation in the J20 Alzheimer mouse model.
        J. Neuroinflammation. 2018; 15: 330
        • Ferreira A.C.
        • S D. M
        • Sousa J.C.
        • Correia-Neves M.
        • et al.
        From the periphery to the brain: Lipocalin-2, a friend or foe?.
        Prog. Neurobiol. 2015; 131: 120-136
        • Golonka R.
        • Yeoh B.S.
        • Vijay-Kumar M.
        The Iron tug-of-war between bacterial siderophores and innate immunity.
        J Innate Immun. 2019; : 1-14
        • Goncalves DaSilva A.
        • Liaw L.
        • Yong V.W.
        Cleavage of osteopontin by matrix metalloproteinase-12 modulates experimental autoimmune encephalomyelitis disease in C57BL/6 mice.
        Am. J. Pathol. 2010; 177: 1448-1458
        • He N.
        • Fan W.
        • Henriquez B.
        • Yu R.T.
        • et al.
        Metabolic control of regulatory T cell (Treg) survival and function by Lkb1.
        Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 12542-12547
        • Jafarinia M.
        • Sadeghi E.
        • Alsahebfosoul F.
        • Etemadifar M.
        • et al.
        Evaluation of plasma Osteopontin level in relapsing- remitting multiple sclerosis patients compared to healthy subjects in Isfahan Province.
        Int. J. Neurosci. 2020; 130: 493-498
        • Jakovac H.
        • Grubić Kezele T.
        • Šućurović S.
        • Mulac-Jeričević B.
        • et al.
        Osteopontin-metallothionein I/II interactions in experimental autoimmune encephalomyelitis.
        Neuroscience. 2017; 350: 133-145
        • Jang E.
        • Kim J.H.
        • Lee S.
        • Kim J.H.
        • et al.
        Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes.
        J. Immunol. 2013; 191: 5204-5219
        • Kalinin S.
        • Meares G.P.
        • Lin S.X.
        • Pietruczyk E.A.
        • et al.
        Liver kinase B1 depletion from astrocytes worsens disease in a mouse model of multiple sclerosis.
        Glia. 2020; 68: 600-616
        • Khalil M.
        • Renner A.
        • Langkammer C.
        • Enzinger C.
        • et al.
        Cerebrospinal fluid lipocalin 2 in patients with clinically isolated syndromes and early multiple sclerosis.
        Mult. Scler. 2016; 22: 1560-1568
        • Kim B.W.
        • Jeong K.H.
        • Kim J.H.
        • Jin M.
        • et al.
        Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system.
        J. Neurosci. 2016; 36: 5608-5622
        • Kim J.H.
        • Ko P.W.
        • Lee H.W.
        • Jeong J.Y.
        • et al.
        Astrocyte-derived lipocalin-2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia.
        Glia. 2017; 65: 1471-1490
        • Kivisäkk P.
        • Healy B.C.
        • Francois K.
        • Gandhi R.
        • et al.
        Evaluation of circulating osteopontin levels in an unselected cohort of patients with multiple sclerosis: relevance for biomarker development.
        Mult. Scler. 2014; 20: 438-444
        • Koyama S.
        • Akbay E.A.
        • Li Y.Y.
        • Aref A.R.
        • et al.
        STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment.
        Cancer Res. 2016; 76: 999-1008
        • Ladwig A.
        • Walter H.L.
        • Hucklenbroich J.
        • Willuweit A.
        • et al.
        Osteopontin augments M2 microglia response and separates M1- and M2-polarized microglial activation in permanent focal cerebral ischemia.
        Mediat. Inflamm. 2017; 2017: 7189421
        • Lee S.
        • Jha M.K.
        • Suk K.
        Lipocalin-2 in the inflammatory activation of brain astrocytes.
        Crit. Rev. Immunol. 2015; 35: 77-84
        • Liu Z.
        • Zhang W.
        • Zhang M.
        • Zhu H.
        • et al.
        Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor kappaB (NF-kappaB) activation in macrophages.
        J. Biol. Chem. 2015; 290: 2312-2320
        • Marques F.
        • Mesquita S.D.
        • Sousa J.C.
        • Coppola G.
        • et al.
        Lipocalin 2 is present in the EAE brain and is modulated by natalizumab.
        Front. Cell. Neurosci. 2012; 6: 33
        • Mazaheri N.
        • Peymani M.
        • Galehdari H.
        • Ghaedi K.
        • et al.
        Ameliorating effect of Osteopontin on H(2)O(2)-induced apoptosis of human oligodendrocyte progenitor cells.
        Cell. Mol. Neurobiol. 2018; 38: 891-899
        • Nam Y.
        • Kim J.H.
        • Seo M.
        • Kim J.H.
        • et al.
        Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues.
        J. Biol. Chem. 2014; 289: 16773-16789
        • Ni W.
        • Zheng M.
        • Xi G.
        • Keep R.F.
        • et al.
        Role of lipocalin-2 in brain injury after intracerebral hemorrhage.
        J. Cereb. Blood Flow Metab. 2015; 35: 1454-1461
        • Pooya S.
        • Liu X.
        • Kumar V.B.
        • Anderson J.
        • et al.
        The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism.
        Nat. Commun. 2014; 5: 4993
        • Rathore K.I.
        • Berard J.L.
        • Redensek A.
        • Chierzi S.
        • et al.
        Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury.
        J. Neurosci. 2011; 31: 13412-13419
        • Sebbagh M.
        • Olschwang S.
        • Santoni M.J.
        • Borg J.P.
        The LKB1 complex-AMPK pathway: the tree that hides the forest.
        Familial Cancer. 2011; 10: 415-424
        • Selvaraju R.
        • Bernasconi L.
        • Losberger C.
        • Graber P.
        • et al.
        Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro.
        Mol. Cell. Neurosci. 2004; 25: 707-721
        • Shackelford D.B.
        • Abt E.
        • Gerken L.
        • Vasquez D.S.
        • et al.
        LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin.
        Cancer Cell. 2013; 23: 143-158
        • Shaw R.J.
        • Kosmatka M.
        • Bardeesy N.
        • Hurley R.L.
        • et al.
        The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 3329-3335
        • Shen Y.A.
        • Chen Y.
        • Dao D.Q.
        • Mayoral S.R.
        • et al.
        Phosphorylation of LKB1/Par-4 establishes Schwann cell polarity to initiate and control myelin extent.
        Nat. Commun. 2014; 5: 4991
        • Shimizu Y.
        • Ota K.
        • Ikeguchi R.
        • Kubo S.
        • et al.
        Plasma osteopontin levels are associated with disease activity in the patients with multiple sclerosis and neuromyelitis optica.
        J. Neuroimmunol. 2013; 263: 148-151
        • Suk K.
        Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective.
        Prog. Neurobiol. 2016; 144: 158-172
        • Sun G.
        • Reynolds R.
        • Leclerc I.
        • Rutter G.A.
        RIP2-mediated LKB1 deletion causes axon degeneration in the spinal cord and hind-limb paralysis.
        Dis. Model. Mech. 2011; 4: 193-202
        • Vay S.U.
        • Olschewski D.N.
        • Petereit H.
        • Lange F.
        • et al.
        Osteopontin regulates proliferation, migration, and survival of astrocytes depending on their activation phenotype.
        J. Neurosci. Res. 2021; 99: 2822-2843
        • Viau A.
        • Bienaime F.
        • Lukas K.
        • Todkar A.P.
        • et al.
        Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney.
        EMBO J. 2018; 37
        • Vogt M.H.
        • Lopatinskaya L.
        • Smits M.
        • Polman C.H.
        • et al.
        Elevated osteopontin levels in active relapsing-remitting multiple sclerosis.
        Ann. Neurol. 2003; 53: 819-822
        • Vogt M.H.
        • Floris S.
        • Killestein J.
        • Knol D.L.
        • et al.
        Osteopontin levels and increased disease activity in relapsing-remitting multiple sclerosis patients.
        J. Neuroimmunol. 2004; 155: 155-160
        • Voskuhl R.R.
        • Patel K.
        • Paul F.
        • Gold S.M.
        • et al.
        Sex differences in brain atrophy in multiple sclerosis.
        Biol. Sex Differ. 2020; 11: 49
        • Walsh N.C.
        • Waters L.R.
        • Fowler J.A.
        • Lin M.
        • et al.
        LKB1 inhibition of NF-kappaB in B cells prevents T follicular helper cell differentiation and germinal center formation.
        EMBO Rep. 2015; 16: 753-768
        • Wu D.
        • Luo Y.
        • Guo W.
        • Niu Q.
        • et al.
        Lkb1 maintains Treg cell lineage identity.
        Nat. Commun. 2017; 8: 15876
        • Yang K.
        • Blanco D.B.
        • Neale G.
        • Vogel P.
        • et al.
        Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling.
        Nature. 2017; 548: 602-606
        • Yu H.
        • Zhong H.
        • Li N.
        • Chen K.
        • et al.
        Osteopontin activates retinal microglia causing retinal ganglion cells loss via p38 MAPK signaling pathway in glaucoma.
        FASEB J. 2021; 35e21405
        • Zhao C.
        • Fancy S.P.
        • ffrench-Constant C., Franklin R. J.
        Osteopontin is extensively expressed by macrophages following CNS demyelination but has a redundant role in remyelination.
        Neurobiol. Dis. 2008; 31: 209-217
        • Zhou Y.
        • Yao Y.
        • Sheng L.
        • Zhang J.
        • et al.
        Osteopontin as a candidate of therapeutic application for the acute brain injury.
        J. Cell. Mol. Med. 2020; 24: 8918-8929