Oral D-mannose treatment suppresses experimental autoimmune encephalomyelitis via induction of regulatory T cells

Published:November 17, 2021DOI:


      • D-mannose (D-m) is a naturally occurring epimer of glucose with known immunoregulatory properties.
      • D-m treatment suppressed both chronic and relapsing-remitting experimental autoimmune encephalomyelitis (EAE).
      • Treatment with D-m reduced numbers of immune cells in the brain and spinal cord of mice with EAE.
      • There was a reduction in numbers of myeloid cells present in the central nervous system (CNS) of mice with EAE treated with D-m.
      • D-m treatment increased the frequency of regulatory T (Treg) cells in the CNS, suggesting a Treg dependent mechanism.


      D-mannose (D-m) is a glucose epimer found in natural products, especially fruits. In mouse models of diabetes and airway inflammation, D-m supplementation via drinking water attenuated pathology by modifying cellular energy metabolism, leading to the activation of latent transforming growth factor beta (TGF-β), which in turn induced T regulatory cells (Tregs). Given that Tregs are important in controlling neuroinflammation in experimental autoimmune encephalomyelitis (EAE) and likely in multiple sclerosis (MS), we hypothesized that D-m could also suppress EAE. We found that D-m delayed disease onset and reduced disease severity in two models of EAE. Importantly, D-m treatment prevented relapses in a relapsing-remitting model of EAE, which mimics the most common clinical manifestation of MS. EAE suppression was accompanied by increased frequency of CD4+FoxP3+ Tregs in the central nervous system, suggesting that EAE suppression resulted from Treg cell induction by D-m. These findings suggest that D-m has the potential to be a safe and low-cost complementary therapy for MS.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Berkovich R.R.
        Acute multiple sclerosis relapse.
        Continuum (Minneap Minn). 2016; 22: 799-814
        • Clerico M.
        • Artusi C.A.
        • Liberto A.D.
        • Rolla S.
        • Bardina V.
        • Barbero P.
        • Mercanti S.F.
        • Durelli L.
        Natalizumab in multiple sclerosis: long-term management.
        Int. J. Mol. Sci. 2017; 18
        • Croxford A.L.
        • Lanzinger M.
        • Hartmann F.J.
        • Schreiner B.
        • Mair F.
        • Pelczar P.
        • Clausen B.E.
        • Jung S.
        • Greter M.
        • Becher B.
        The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity.
        Immunity. 2015; 43: 502-514
        • Davis J.A.
        • Freeze H.H.
        Studies of mannose metabolism and effects of long-term mannose ingestion in the mouse.
        Biochim. Biophys. Acta. 2001; 1528: 116-126
        • Fife B.T.
        • Huffnagle G.B.
        • Kuziel W.A.
        • Karpus W.J.
        CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis.
        J. Exp. Med. 2000; 192: 899-905
        • Fletcher J.M.
        • Lalor S.J.
        • Sweeney C.M.
        • Tubridy N.
        • Mills K.H.
        T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.
        Clin. Exp. Immunol. 2010; 162: 1-11
        • Giles D.A.
        • Duncker P.C.
        • Wilkinson N.M.
        • Washnock-Schmid J.M.
        • Segal B.M.
        CNS-resident classical DCs play a critical role in CNS autoimmune disease.
        J. Clin. Invest. 2018; 128: 5322-5334
        • Hilliard B.A.
        • Kamoun M.
        • Ventura E.
        • Rostami A.
        Mechanisms of suppression of experimental autoimmune encephalomyelitis by intravenous administration of myelin basic protein: role of regulatory spleen cells.
        Exp. Mol. Pathol. 2000; 68: 29-37
        • Ineichen B.V.
        • Moridi T.
        • Granberg T.
        • Piehl F.
        Rituximab treatment for multiple sclerosis.
        Mult. Scler. 2020; 26: 137-152
        • Kleinewietfeld M.
        • Hafler D.A.
        Regulatory T cells in autoimmune neuroinflammation.
        Immunol. Rev. 2014; 259: 231-244
        • Kranjcec B.
        • Papes D.
        • Altarac S.
        D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial.
        World J. Urol. 2014; 32: 79-84
        • Linda H.
        • von Heijne A.
        • Major E.O.
        • Ryschkewitsch C.
        • Berg J.
        • Olsson T.
        • Martin C.
        Progressive multifocal leukoencephalopathy after natalizumab monotherapy.
        N. Engl. J. Med. 2009; 361: 1081-1087
        • de Lonlay P.
        • Seta N.
        The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib.
        Biochim. Biophys. Acta. 2009; 1792: 841-843
        • Lowther D.E.
        • Hafler D.A.
        Regulatory T cells in the central nervous system.
        Immunol. Rev. 2012; 248: 156-169
        • Machado-Santos J.
        • Saji E.
        • Troscher A.R.
        • Paunovic M.
        • Liblau R.
        • Gabriely G.
        • Bien C.G.
        • Bauer J.
        • Lassmann H.
        The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells.
        Brain. 2018; 141: 2066-2082
        • Mayatepek E.
        • Schroder M.
        • Kohlmuller D.
        • Bieger W.P.
        • Nutzenadel W.
        Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I.
        Acta Paediatr. 1997; 86: 1138-1140
        • McHugh R.S.
        • Shevach E.M.
        The role of suppressor T cells in regulation of immune responses.
        J. Allergy Clin. Immunol. 2002; 110: 693-702
        • Michaels E.K.
        • Chmiel J.S.
        • Plotkin B.J.
        • Schaeffer A.J.
        Effect of D-mannose and D-glucose on Escherichia coli bacteriuria in rats.
        Urol. Res. 1983; 11: 97-102
        • O’Connor R.A.
        • Anderton S.M.
        Foxp3+ regulatory T cells in the control of experimental CNS autoimmune disease.
        J. Neuroimmunol. 2008; 193: 1-11
        • Ramaglia V.
        • Sheikh-Mohamed S.
        • Legg K.
        • Park C.
        • Rojas O.L.
        • Zandee S.
        • Fu F.
        • Ornatsky O.
        • Swanson E.C.
        • Pitt D.
        • Prat A.
        • McKee T.D.
        • Gommerman J.L.
        Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry.
        Elife. 2019; 8(
        • Schneider A.
        • Thiel C.
        • Rindermann J.
        • DeRossi C.
        • Popovici D.
        • Hoffmann G.F.
        • Grone H.J.
        • Korner C.
        Successful prenatal mannose treatment for congenital disorder of glycosylation-Ia in mice.
        Nat. Med. 2011; 18: 71-73
        • Zhang D.
        • Chia C.
        • Jiao X.
        • Jin W.
        • Kasagi S.
        • Wu R.
        • Konkel J.E.
        • Nakatsukasa H.
        • Zanvit P.
        • Goldberg N.
        • Chen Q.
        • Sun L.
        • Chen Z.J.
        • Chen W.
        D-mannose induces regulatory T cells and suppresses immunopathology.
        Nat. Med. 2017; 23: 1036-1045
        • Zrzavy T.
        • Hametner S.
        • Wimmer I.
        • Butovsky O.
        • Weiner H.L.
        • Lassmann H.
        Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis.
        Brain. 2017; 140: 1900-1913