Quantitative analysis of spinal cord neuropathology in experimental autoimmune encephalomyelitis

Published:November 17, 2021DOI:https://doi.org/10.1016/j.jneuroim.2021.577777


      • Existing methods for the analysis of EAE neuropathology are primarily qualitative.
      • We describe a method for quantitation of a large segment of the EAE spinal cord.
      • This method allows for determination of percent area for many markers of interest.
      • This method will facilitate discovery of medications that protect axons and myelin.


      Multiple sclerosis is an inflammatory and neurodegenerative condition that is frequently modeled using experimental autoimmune encephalomyelitis (EAE). Current methods of EAE histology include imprecise qualitative assessments and time-consuming analyses of selected regions. With increasing interest in neuroprotective or reparative therapies, it is important that potential therapeutics are evaluated in EAE through quantitative neuropathology. We describe a quantitative whole slide imaging immunofluorescence method that allows longitudinal sections of the entire EAE thoracic spinal cord to be investigated for the extent of neuroinflammation, axonal loss, and myelin density. This method should impact MS research by making histological comparisons of EAE increasingly robust.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bjelobaba I.
        • Begovic-Kupresanin V.
        • Pekovic S.
        • Lavrnja I.
        Animal models of multiple sclerosis: focus on experimental autoimmune encephalomyelitis.
        J. Neurosci. Res. 2018; 96: 1021-1042https://doi.org/10.1002/jnr.24224
        • Chang S.
        • Wai S.
        • Chin P.
        • Lim J.
        • Mitra N.
        Evaluation of changes in the locomotion and histology of sciatic nerve following experimental autoimmune encephalomyelitis.
        J. Morphol. Sci. 2017; 34: 241-246https://doi.org/10.4322/jms.111117
        • Constantinescu C.S.
        • Farooqi N.
        • O’Brien K.
        • Gran B.
        Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS): EAE as model for MS.
        Br. J. Pharmacol. 2011; 164: 1079-1106https://doi.org/10.1111/j.1476 5381.2011.01302.x
        • Faissner S.
        • Mishra M.
        • Kaushik D.K.
        • Wang J.
        • Fan Y.
        • Silva C.
        • Rauw G.
        • Metz L.
        • Koch M.
        • Yong V.W.
        Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic.
        Nat. Commun. 2017; 8: 1990https://doi.org/10.1038/s41467-017-02119-6
        • Goncalves DaSilva A.
        • Yong V.W.
        Matrix metalloproteinase-12 deficiency worsens relapsing-remitting experimental autoimmune encephalomyelitis in association with cytokine and chemokine dysregulation.
        Am. J. Pathol. 2009; 174: 898-909https://doi.org/10.2353/ajpath.2009.080952
        • Khan N.
        • Woodruff T.M.
        • Smith M.T.
        Establishment and characterization of an optimized mouse model of multiple sclerosis-induced neuropathic pain using behavioral, pharmacologic, histologic and immunohistochemical methods.
        Pharmacol. Biochem. Behav. 2014; 126: 13-27https://doi.org/10.1016/j.pbb.2014.09.003
        • Kipp M.
        • Nyamoya S.
        • Hochstrasser T.
        • Amor S.
        Multiple sclerosis animal models: a clinical and histopathological perspective.
        Brain Pathol. (Zurich, Switzerland). 2017; 27: 123-137https://doi.org/10.1111/bpa.12454
        • McCarthy D.P.
        • Richards M.H.
        • Miller S.D.
        Mouse models of multiple sclerosis: Experimental autoimmune encephalomyelitis and theiler’s virus-induced demyelinating disease.
        in: Perl A. Autoimmunity. Vol. 900. Humana Press, 2012: 381-401https://doi.org/10.1007/978-1-60761-720-4_19
        • Mi S.
        • Hu B.
        • Hahm K.
        • Luo Y.
        • Kam Hui E.S.
        • Yuan Q.
        • Wong W.M.
        • Wang L.
        • Su H.
        • Chu T.-H.
        • Guo J.
        • Zhang W.
        • So K.-F.
        • Pepinsky B.
        • Shao Z.
        • Graff C.
        • Garber E.
        • Jung V.
        • Wu E.X.
        • Wu W.
        LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis.
        Nat. Med. 2007; 13: 1228-1233https://doi.org/10.1038/nm1664
        • Mishra M.K.
        • Wang J.
        • Keough M.B.
        • Fan Y.
        • Silva C.
        • Sloka S.
        • Hayardeny L.
        • Brück W.
        • Yong V.W.
        Laquinimod reduces neuroaxonal injury through inhibiting microglial activation.
        Ann. Clin. Transl. Neurol. 2014; 1: 409-422https://doi.org/10.1002/acn3.67
        • Prinz J.
        • Karacivi A.
        • Stormanns E.R.
        • Recks M.S.
        • Kuerten S.
        Time-dependent progression of demyelination and axonal pathology in mp4-induced experimental autoimmune encephalomyelitis.
        PLoS One. 2015; 10e0144847https://doi.org/10.1371/journal.pone.0144847