Muscarinic receptors control markers of inflammation in the small intestine of BALB/c mice

  • Ivonne Maciel Arciniega-Martínez
    Affiliations
    Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, CP 11340 Ciudad de México, Mexico
    Search for articles by this author
  • Judith Pacheco-Yépez
    Affiliations
    Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, CP 11340 Ciudad de México, Mexico
    Search for articles by this author
  • Mónica Miguel Santamaria-Chávez
    Affiliations
    Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, CP 11340 Ciudad de México, Mexico
    Search for articles by this author
  • Xóchitl Abril Rebollar-Ruíz
    Affiliations
    Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, CP 11340 Ciudad de México, Mexico
    Search for articles by this author
  • Luz María Cárdenas-Jaramillo
    Affiliations
    Coordinación de Morfología, Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, CP11340 Ciudad de México, Mexico
    Search for articles by this author
  • Rosa Adriana Jarillo-Luna
    Affiliations
    Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, CP 11340 Ciudad de México, Mexico
    Search for articles by this author
  • Author Footnotes
    1 In memoriam Rafael Campos-Rodríguez, PhD.
    Rafael Campos-Rodríguez
    Footnotes
    1 In memoriam Rafael Campos-Rodríguez, PhD.
    Affiliations
    Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, CP 11340 Ciudad de México, Mexico
    Search for articles by this author
  • Maria Elisa Drago-Serrano
    Correspondence
    Corresponding authors.
    Affiliations
    Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Ciudad de México, Mexico
    Search for articles by this author
  • Aldo Arturo Reséndiz-Albor
    Correspondence
    Corresponding authors.
    Affiliations
    Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, CP 11340 Ciudad de México, Mexico
    Search for articles by this author
  • Author Footnotes
    1 In memoriam Rafael Campos-Rodríguez, PhD.
Published:November 09, 2021DOI:https://doi.org/10.1016/j.jneuroim.2021.577764

      Highlights

      • Muscarine upregulates intestinal inflammation under basal conditions.
      • Atropine has no effect on intestinal inflammation under basal conditions.
      • Muscarine but not atropine increases the TNF-α/CD4+ T cell response in the lamina propria.
      • Muscarine but not atropine alters mucus secretion by goblet cells.
      • Muscarine but not atropine triggers neutrophil recruitment in the lamina propria.

      Abstract

      Muscarinic-acetylcholine-receptors (mAChRs) modulate intestinal homeostasis, but their role in inflammation is unclear; thus, this issue was the focus of this study. BALB/c mice were treated for 7 days with muscarine (mAChR/agonist), atropine (mAChR/antagonist) or saline. Small-intestine samples were collected for histology and cytofluorometric assays in Peyer's patches (PP) and lamina propria (LP) cell-suspensions. In LP, goblet-cells/leukocytes/neutrophils/MPO+ cells and MPO/activity were increased in the muscarine group. In PP, IFN-γ+/CD4+ T or IL-6+/CD4+ T cell numbers were higher in the muscarine or atropine groups, respectively. In LP, TNF-α+/CD4+ T cell number was higher in the muscarine group and lower in the atropine.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arciniega-Martínez I.M.
        • Campos-Rodríguez R.
        • Drago-Serrano M.E.
        • Sánchez-Torres L.E.
        • Cruz-Hernández T.R.
        • Reséndiz-Albor A.A.
        Modulatory effects of oral bovine lactoferrin on the IgA response at inductor and effector sites of distal small intestine from BALB/c mice.
        Arch. Immunol. Ther. Exp. 2016 Feb; 64: 57-63https://doi.org/10.1007/s00005-015-0358-6
        • Bain C.C.
        • Mowat A.M.
        Macrophages in intestinal homeostasis and inflammation.
        Immunol. Rev. 2014 Jul; 260: 102-117https://doi.org/10.1111/imr.12192
        • Beckmann J.
        • Lips K.S.
        The non-neuronal cholinergic system in health and disease.
        Pharmacology. 2013; 92: 286-302https://doi.org/10.1159/000355835
        • Bernik T.R.
        • Friedman S.G.
        • Ochani M.
        • DiRaimo R.
        • Ulloa L.
        • Yang H.
        • Sudan S.
        • Czura C.J.
        • Ivanova S.M.
        • Tracey K.J.
        Pharmacological stimulation of the cholinergic antiinflammatory pathway.
        J. Exp. Med. 2002; 195: 781-788
        • Contis Montes de Oca A.
        • Cruz Baquero A.
        • Campos Rodríguez R.
        • Cárdenas Jaramillo L.M.
        • Aguayo Flores J.E.
        • Rojas Hernández S.
        • Olivos García A.
        • Pacheco Yepez J.
        Neutrophil extracellular traps and MPO in models of susceptibility and resistance against Entamoeba histolytica.
        Parasite Immunol. 2020 Jun; 42e12714https://doi.org/10.1111/pim.12714
        • Cruz-Baquero A.
        • Cardenas-Jaramillo L.M.
        • Gutiérrez-Meza M.
        • Jarillo-Luna R.A.
        • Campos-Rodríguez R.
        • Rivera-Aguilar V.
        • Miliar-García A.
        • Pacheco-Yepez J.
        Different behavior of myeloperoxidase in two rodent amoebic liver abscess models.
        PLoS One. 2017; 12e0182480https://doi.org/10.1371/journal.pone.0182480
        • Dhawan S.
        • De Palma G.
        • Willemze R.A.
        • Hilbers F.W.
        • Verseijden C.
        • Luyer M.D.
        • Nuding S.
        • Wehkamp J.
        • Souwer Y.
        • de Jong E.C.
        • Seppen J.
        • van den Wijngaard R.M.
        • Wehner S.
        • Verdu E.
        • Bercik P.
        • de Jonge W.J.
        Acetylcholine-producing T cells in the intestine regulate antimicrobial peptide expression and microbial diversity.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2016 Nov 1; 311: G920-G933https://doi.org/10.1152/ajpgi.00114.2016
        • Ermund A.
        • Schütte A.
        • Johansson M.E.
        • Gustafsson J.K.
        • Hansson G.C.
        Studies of mucus in mouse stomach, small intestine, and colon. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2013 Sep 1; 305: G341-G347https://doi.org/10.1152/ajpgi.00046.2013
        • Faderl M.
        • Noti M.
        • Corazza N.
        • Mueller C.
        Keeping bugs in check: the mucus layer as a critical component in maintaining intestinal homeostasis.
        IUBMB Life. 2015 Apr; 67: 275-285https://doi.org/10.1002/iub.1374
        • Fuentes J.M.
        • Fulton W.B.
        • Nino D.
        • Talamini M.A.
        • Maio A.D.
        Atropine treatment modifies LPS-induced inflammatory response and increases survival.
        Inflamm. Res. 2008 Mar; 57: 111-117https://doi.org/10.1007/s00011-007-7134-y
        • Gautron L.
        • Rutkowski J.M.
        • Burton M.D.
        • Wei W.
        • Wan Y.
        • Elmquist J.K.
        Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen.
        J. Comp. Neurol. 2013 Nov; 521: 3741-3767https://doi.org/10.1002/cne.23376
        • Greig C.J.
        • Cowles R.A.
        Muscarinic acetylcholine receptors participate in small intestinal mucosal homeostasis.
        J. Pediatr. Surg. 2017 Jun; 52: 1031-1034https://doi.org/10.1016/j.jpedsurg.2017.03.037
        • Gustafsson J.K.
        • Ermund A.
        • Johansson M.E.
        • Schütte A.
        • Hansson G.C.
        • Sjövall H.
        An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2012 Feb 15; 302: G430-G438https://doi.org/10.1152/ajpgi.00405.2011
        • Johansen F.E.
        • Brandtzaeg P.
        Transcriptional regulation of the mucosal IgA system.
        Trends Immunol. 2004 Mar; 25: 150-157https://doi.org/10.1016/j.it.2004.01.001
        • Khan M.R.
        • Uwada J.
        • Yazawa T.
        • Islam M.T.
        • Krug S.M.
        • Fromm M.
        • Karaki S.
        • Suzuki Y.
        • Kuwahara A.
        • Yoshiki H.
        • Sada K.
        • Muramatsu I.
        • Anisuzzaman A.S.
        • Taniguchi T.
        Activation of muscarinic cholinoceptor ameliorates tumor necrosis factor-α-induced barrier dysfunction in intestinal epithelial cells.
        FEBS Lett. 2015 Nov 30; 589 (Epub 2015 Oct 28): 3640-3647https://doi.org/10.1016/j.febslet.2015.10.029
        • Kilkenny C.
        • Browne W.J.
        • Cuthill I.C.
        • Emerson M.
        • Altman D.G.
        Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research.
        PLoS Biol. 2010; 8e1000412https://doi.org/10.1371/journal.pbio.1000412
        • Kimura H.
        • Imura Y.K.
        • Tomiyasu H.
        • Mihara T.
        • Kaji N.
        • Ohno K.
        • Unno T.
        • Tanahashi Y.
        • Jan T.R.
        • Tsubone H.
        • Ozaki H.
        • Hori M.
        Neural anti-inflammatory action mediated by two types of acetylcholine receptors in the small intestine.
        Sci. Rep. 2019 Apr 10; 9: 5887https://doi.org/10.1038/s41598-019-41698-w
        • Knoop K.A.
        • McDonald K.G.
        • McCrate S.
        • McDole J.R.
        • Newberry R.D.
        Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon.
        Mucosal Immunol. 2015 Jan; 8 (Epub 2014 Jul 9): 198-210https://doi.org/10.1038/mi.2014.58
        • Kunikata T.
        • Miyazawa T.
        • Kanatsu K.
        • Kato S.
        • Takeuchi K.
        Protective effect of thiaton, an antispasmodic drug, against indomethacin-induced intestinal damage in rats.
        Jpn. J. Pharmacol. 2002 Jan; 88: 45-54https://doi.org/10.1254/jjp.88.45
        • Machorro-Rojas N.
        • Sainz-Espuñes T.
        • Godínez-Víctoria M.
        • Castañeda-Sánchez J.I.
        • Campos-Rodríguez R.
        • Pacheco-Yépez J.
        • Drago-Serrano M.E.
        Impact of chronic immobilization stress on parameters of colonic homeostasis in BALB/c mice.
        Mol. Med. Rep. 2019 Sep; 20 (Epub 2019 Jun 27): 2083-2090https://doi.org/10.3892/mmr.2019.10437
        • Magalhães D.A.
        • Batista J.A.
        • Sousa S.G.
        • Ferreira J.D.S.
        • da Rocha Rodrigues L.
        • Pereira C.M.C.
        • do Nascimento Lima J.V.
        • de Albuquerque I.F.
        • NLSD Bezerra
        • Monteiro C.E.D.S.
        • Franco A.X.
        • da Costa Filho H.B.
        • Ferreira F.C.S.
        • Havt A.
        • Di Lenardo D.
        • Vasconcelos D.F.P.
        • de Oliveira J.S.
        • Soares P.M.G.
        • Barbosa A.L.D.R.
        McN-A-343, a muscarinic agonist, reduces inflammation and oxidative stress in an experimental model of ulcerative colitis.
        Life Sci. 2021 May 1; 272 (Epub 2021 Feb 18): 119194https://doi.org/10.1016/j.lfs.2021.119194
        • McLean L.P.
        • Smith A.
        • Cheung L.
        • Urban Jr., J.F.
        • Sun R.
        • Grinchuk V.
        • Desai N.
        • Zhao A.
        • Raufman J.P.
        • Shea-Donohue T.
        Type 3 muscarinic receptors contribute to intestinal mucosal homeostasis and clearance of Nippostrongylus brasiliensis through induction of TH2 cytokines.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2016 Jul 1; 311 (Epub 2016 May 12): G130-G141https://doi.org/10.1152/ajpgi.00461.2014
        • Muise E.D.
        • Gandotra N.
        • Tackett J.J.
        • Bamdad M.C.
        • Cowles R.A.
        Distribution of muscarinic acetylcholine receptor subtypes in the murine small intestine.
        Life Sci. 2017 Jan 15; 169: 6-10https://doi.org/10.1016/j.lfs.2016.10.030
        • Munyaka P.
        • Rabbi M.F.
        • Pavlov V.A.
        • Tracey K.J.
        • Khafipour E.
        • Ghia J.E.
        Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis.
        PLoS One. 2014 Oct 8; 9 (eCollection 2014)e109272https://doi.org/10.1371/journal.pone.0109272
        • Neutra M.R.
        • O’Malley L.J.
        • Specian R.D.
        Regulation of intestinal goblet cell secretion. II. A survey of potential secretagogues.
        Am. J. Phys. 1982 Apr; 242: G380-G387https://doi.org/10.1152/ajpgi.1982.242.4.G380
        • Pavlov V.A.
        • Ochani M.
        • Gallowitsch-Puerta M.
        • Ochani K.
        • Huston J.M.
        • Czura C.J.
        • Al-Abed Y.
        • Tracey K.J.
        Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 5219-5223
        • Pavlov V.A.
        • Parrish W.R.
        • Rosas-Ballina M.
        • Ochani M.
        • Puerta M.
        • Ochani K.
        • Chavan S.
        • Al-Abed Y.
        • Tracey K.J.
        Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway.
        Brain Behav. Immun. 2009; 23: 41-45
        • Pérez-López J.A.
        • Rojas-Hernández S.
        • Campos-Rodríguez R.
        • Arciniega-Martínez I.M.
        • Cruz-Hernández T.R.
        • Reséndiz-Albor A.A.
        • Drago-Serrano M.E.
        Posterior subdiaphragmatic vagotomy downmodulates the IgA levels in the small intestine of BALB/c mice.
        Neuroimmunomodulation. 2019; 26: 292-300https://doi.org/10.1159/000505097
        • Razani-Boroujerdi S.
        • Behl M.
        • Hahn F.F.
        • Pena-Philippides J.C.
        • Hutt J.
        • Sopori M.L.
        Role of muscarinic receptors in the regulation of immune and inflammatory responses.
        J. Neuroimmunol. 2008 Feb; 194 (Epub 2008 Jan 10): 83-88https://doi.org/10.1016/j.jneuroim.2007.11.019
        • Reséndiz-Albor A.A.
        • Esquivel R.
        • López-Revilla R.
        • Verdín L.
        • Moreno-Fierros L.
        Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice.
        Life Sci. 2005 Apr 29; 76: 2783-2803https://doi.org/10.1016/j.lfs.2004.08.042
        • Reséndiz-Albor A.A.
        • Reina-Garfias H.
        • Rojas-Hernández S.
        • Jarillo-Luna A.
        • Rivera-Aguilar V.
        • Miliar-García A.
        • Campos-Rodríguez R.
        Regionalization of pIgR expression in the mucosa of mouse small intestine.
        Immunol. Lett. 2010 Jan 18; 128: 59-67https://doi.org/10.1016/j.imlet.2009.11.005
        • Sales M.E.
        Muscarinic receptors as targets for anti-inflammatory therapy.
        Curr. Opin. Investig. Drugs. 2010 Nov; 11: 1239-1245
        • Singh S.P.
        • Chand H.S.
        • Banerjee S.
        • Agarwal H.
        • Raizada V.
        • Roy S.
        • Sopori M.
        Acetylcholinesterase inhibitor Pyridostigmine bromide attenuates gut pathology and bacterial Dysbiosis in a murine model of ulcerative colitis.
        Dig. Dis. Sci. 2020 Jan; 65 (Epub 2019 Oct 23): 141-149https://doi.org/10.1007/s10620-019-05838-6
        • Specian R.D.
        • Neutra M.R.
        Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine.
        J. Cell Biol. 1980 Jun; 85: 626-640https://doi.org/10.1083/jcb.85.3.626
        • Specian R.D.
        • Neutra M.R.
        Regulation of intestinal goblet cell secretion. I. Role of parasympathetic stimulation.
        Am. J. Phys. 1982 Apr; 242: G370-G379https://doi.org/10.1152/ajpgi.1982.242.4.G370
        • Suzuki K.
        • Araki H.
        • Komoike Y.
        • Takeuchi K.
        Permissive role of neutrophils in pathogenesis of indomethacin-induced gastric lesions in rats.
        Med. Sci. Monit. 2000 Sep-Oct; 6: 908-914
        • Takeuchi K.
        • Tanaka A.
        • Kato S.
        • Amagase K.
        • Satoh H.
        Roles of COX inhibition in pathogenesis of NSAID-induced small intestinal damage.
        Clin. Chim. Acta. 2010 Apr 2; 411 (Epub 2010 Jan 13): 459-466https://doi.org/10.1016/j.cca.2009.12.026
        • Takeuchi T.
        • Fujinami K.
        • Goto H.
        • Fujita A.
        • Taketo M.M.
        • Manabe T.
        • Matsui M.
        • Hata F.
        Roles of M2 and M4 muscarinic receptors in regulating acetylcholine release from myenteric neurons of mouse ileum.
        J. Neurophysiol. 2005 May; 93 (Epub 2004 Dec 1): 2841-2848https://doi.org/10.1152/jn.00986.2004
        • Tezuka H.
        • Abe Y.
        • Iwata M.
        • Takeuchi H.
        • Ishikawa H.
        • Matsushita M.
        • Shiohara T.
        • Akira S.
        • Ohteki T.
        Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells.
        Nature. 2007 Aug 23; 448: 929-933https://doi.org/10.1038/nature06033
        • Tobin G.
        • Giglio D.
        • Lundgren O.
        Muscarinic receptor subtypes in the alimentary tract.
        J. Physiol. Pharmacol. 2009 Mar; 60: 3-21https://doi.org/10.1159/000209255