The immunological response to traumatic brain injury

      Highlights

      • Significant unexplained heterogeneity in outcome after TBI suggests important undiscovered factors.
      • Activation of both the innate and adaptive immune systems are seen following TBI.
      • Persistent immune activation can be seen years after injury.
      • Attempts at immunomodulation must be precisely targeted to avoid compromising beneficial effects.

      Abstract

      Traumatic brain injury (TBI) is the leading cause of death and disability in young adults in the developed world. The accuracy of early outcome-prediction remains poor even when all known prognostic factors are considered, suggesting important currently unidentified variables. In addition, whilst survival and neurological outcomes have improved markedly with the utilisation of therapies that optimise physiology, no treatments specifically modulate the underlying pathophysiology. The immunological response to TBI represents both a potential contributor to outcome heterogeneity and a therapeutically tractable component of the acute disease process. Furthermore, chronic inflammation has been linked with neurodegeneration, and may mark a bridge between acute brain injury and the subsequent neurodegenerative process seen in a proportion of patients following TBI. Given the complexity of the immune response and its varying functions ranging from repair of injury to bystander damage of healthy tissue, attempts at immunomodulatory intervention must necessarily be highly targeted towards the maladaptive facets of the inflammatory process. In this review we aim to provide an integrated description of the immunological processes triggered by TBI in both humans and animal models, in particular considering the interplay between the innate immune system, danger-associated molecular patterns and loss of self-tolerance leading to adaptive autoimmunity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Absinta M.
        • Ha S.-K.
        • Nair G.
        • Sati P.
        • Luciano N.J.
        • Palisoc M.
        • Louveau A.
        • Zaghloul K.A.
        • Pittaluga S.
        • Kipnis J.
        • Reich D.S.
        Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI.
        eLife. 2017; 6https://doi.org/10.7554/eLife.29738
        • Adembri C.
        • Selmi V.
        • Vitali L.
        • Tani A.
        • Margheri M.
        • Loriga B.
        • Carlucci M.
        • Nosi D.
        • Formigli L.
        • De Gaudio A.R.
        Minocycline but not tigecycline is neuroprotective and reduces the neuroinflammatory response induced by the superimposition of sepsis upon traumatic brain injury.
        Crit. Care Med. 2014; 42: e570-e582https://doi.org/10.1097/CCM.0000000000000414
        • Allan S.M.
        • Tyrrell P.J.
        • Rothwell N.J.
        Interleukin-1 and neuronal injury.
        Nat. Rev. Immunol. 2005; 5: 629https://doi.org/10.1038/nri1664
        • Alsharifi M.
        • Lobigs M.
        • Simon M.M.
        • Kersten A.
        • Müller K.
        • Koskinen A.
        • Lee E.
        • Müllbacher A.
        NK cell-mediated immunopathology during an acute viral infection of the CNS.
        Eur. J. Immunol. 2006; 36: 887-896https://doi.org/10.1002/eji.200535342
        • Amor S.
        • Puentes F.
        • Baker D.
        • van der Valk P.
        Inflammation in neurodegenerative diseases.
        Immunology. 2010; 129: 154-169https://doi.org/10.1111/j.1365-2567.2009.03225.x
        • Ankeny D.P.
        • Lucin K.M.
        • Sanders V.M.
        • McGaughy V.M.
        • Popovich P.G.
        Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis.
        J. Neurochem. 2006; 99: 1073-1087https://doi.org/10.1111/j.1471-4159.2006.04147.x
        • Ankeny D.P.
        • Guan Z.
        • Popovich P.G.
        B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice.
        J. Clin. Invest. 2009; 119: 2990-2999https://doi.org/10.1172/JCI39780
        • Bao F.
        • Shultz S.R.
        • Hepburn J.D.
        • Omana V.
        • Weaver L.C.
        • Cain D.P.
        • Brown A.
        A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats.
        J. Neurotrauma. 2012; 29: 2375-2392https://doi.org/10.1089/neu.2012.2408
        • Bazarian J.J.
        • Zhu T.
        • Zhong J.
        • Janigro D.
        • Rozen E.
        • Roberts A.
        • Javien H.
        • Merchant-Borna K.
        • Abar B.
        • Blackman E.G.
        Persistent, long-term cerebral white matter changes after sports-related repetitive head impacts.
        PLoS One. 2014; 9e94734https://doi.org/10.1371/journal.pone.0094734
        • Bell M.J.
        • Kochanek P.M.
        • Doughty L.A.
        • Carcillo J.A.
        • Adelson P.D.
        • Clark R.S.
        • Wisniewski S.R.
        • Whalen M.J.
        • DeKosky S.T.
        Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children.
        J. Neurotrauma. 1997; 14: 451-457https://doi.org/10.1089/neu.1997.14.451
        • Bellander B.-M.
        • Singhrao S.K.
        • Ohlsson M.
        • Mattsson P.
        • Svensson M.
        Complement activation in the human brain after traumatic head injury.
        J. Neurotrauma. 2001; 18: 1295-1311
        • Bennett R.E.
        • Brody D.L.
        Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury.
        J. Neurotrauma. 2014; 31: 1647-1663https://doi.org/10.1089/neu.2013.3320
        • Bermpohl D.
        • You Z.
        • Lo E.H.
        • Kim H.-H.
        • Whalen M.J.
        TNF alpha and fas mediate tissue damage and functional outcome after traumatic brain injury in mice.
        J. Cereb. Blood Flow Metab. 2007; 27: 1806-1818https://doi.org/10.1038/sj.jcbfm.9600487
        • Blasio D.D.
        • Fumagalli S.
        • Orsini F.
        • Neglia L.
        • Perego C.
        • Ortolano F.
        • Zanier E.R.
        • Picetti E.
        • Locatelli M.
        • Stocchetti N.
        • Longhi L.
        • Garred P.
        • Simoni M.-G.D.
        Human brain trauma severity is associated with lectin complement pathway activation.
        J. Cereb. Blood Flow Metab. 2018; (0271678X18758881)https://doi.org/10.1177/0271678X18758881
        • Block M.L.
        • Zecca L.
        • Hong J.-S.
        Microglia-mediated neurotoxicity: uncovering the molecular mechanisms.
        Nat. Rev. Neurosci. 2007; 8: 57-69https://doi.org/10.1038/nrn2038
        • Bradley J.R.
        TNF-mediated inflammatory disease.
        J. Pathol. 2008; 214: 149-160https://doi.org/10.1002/path.2287
        • Braun M.
        • Vaibhav K.
        • Saad N.M.
        • Fatima S.
        • Vender J.R.
        • Baban B.
        • Hoda M.N.
        • Dhandapani K.M.
        White matter damage after traumatic brain injury: A role for damage associated molecular patterns.
        Biochim. Biophys. Acta BBA - Mol. Basis Dis. 2017; 1863: 2614-2626https://doi.org/10.1016/j.bbadis.2017.05.020
        • Buonora J.E.
        • Mousseau M.
        • Jacobowitz D.M.
        • Lazarus R.C.
        • Yarnell A.M.
        • Olsen C.H.
        • Pollard H.B.
        • Diaz-Arrastia R.
        • Latour L.
        • Mueller G.P.
        Autoimmune profiling reveals peroxiredoxin 6 as a candidate traumatic brain injury biomarker.
        J. Neurotrauma. 2015; 32: 1805-1814https://doi.org/10.1089/neu.2014.3736
        • Carlos T.M.
        • Clark R.S.
        • Franicola-Higgins D.
        • Schiding J.K.
        • Kochanek P.M.
        Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats.
        J. Leukoc. Biol. 1997; 61: 279-285
        • Chao C.C.
        • Hu S.
        • Ehrlich L.
        • Peterson P.K.
        Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-d-aspartate receptors.
        Brain Behav. Immun. 1995; 9: 355-365
        • Chen X.
        • Duan X.-S.
        • Xu L.-J.
        • Zhao J.-J.
        • She Z.-F.
        • Chen W.-W.
        • Zheng Z.-J.
        • Jiang G.-D.
        Interleukin-10 mediates the neuroprotection of hyperbaric oxygen therapy against traumatic brain injury in mice.
        Neuroscience. 2014; 266: 235-243https://doi.org/10.1016/j.neuroscience.2013.11.036
        • Chen Y.
        • Won S.J.
        • Xu Y.
        • Swanson R.A.
        Targeting microglial activation in stroke therapy: pharmacological tools and gender effects.
        Curr. Med. Chem. 2014; 21: 2146-2155
        • Chenouard A.
        • Chesneau M.
        • Braza F.
        • Dejoie T.
        • Cinotti R.
        • Roquilly A.
        • Brouard S.
        • Asehnoune K.
        Phenotype and functions of B cells in patients with acute brain injuries.
        Mol. Immunol. 2015; 68: 350-356https://doi.org/10.1016/j.molimm.2015.09.001
        • Chiaretti A.
        • Genovese O.
        • Aloe L.
        • Antonelli A.
        • Piastra M.
        • Polidori G.
        • Rocco C.D.
        Interleukin 1β and interleukin 6 relationship with paediatric head trauma severity and outcome.
        Childs Nerv. Syst. 2005; 21: 185-193https://doi.org/10.1007/s00381-004-1032-1
        • Chio C.-C.
        • Lin J.-W.
        • Chang M.-W.
        • Wang C.-C.
        • Kuo J.-R.
        • Yang C.-Z.
        • Chang C.-P.
        Therapeutic evaluation of etanercept in a model of traumatic brain injury.
        J. Neurochem. 2010; 115: 921-929https://doi.org/10.1111/j.1471-4159.2010.06969.x
        • Ciaramella A.
        • Della Vedova C.
        • Salani F.
        • Viganotti M.
        • D'Ippolito M.
        • Caltagirone C.
        • Formisano R.
        • Sabatini U.
        • Bossù P.
        Increased levels of serum IL-18 are associated with the long-term outcome of severe traumatic brain injury.
        Neuroimmunomodulation. 2014; 21: 8-12https://doi.org/10.1159/000354764
        • Clark R.S.
        • Schiding J.K.
        • Kaczorowski S.L.
        • Marion D.W.
        • Kochanek P.M.
        Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models.
        J. Neurotrauma. 1994; 11: 499-506https://doi.org/10.1089/neu.1994.11.499
        • Clausen F.
        • Lorant T.
        • Lewén A.
        • Hillered L.
        T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury.
        J. Neurotrauma. 2007; 24: 1295-1307https://doi.org/10.1089/neu.2006.0258
        • Clausen F.
        • Hånell A.
        • Björk M.
        • Hillered L.
        • Mir A.K.
        • Gram H.
        • Marklund N.
        Neutralization of interleukin-1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice.
        Eur. J. Neurosci. 2009; 30: 385-396https://doi.org/10.1111/j.1460-9568.2009.06820.x
        • Clausen F.
        • Hånell A.
        • Israelsson C.
        • Hedin J.
        • Ebendal T.
        • Mir A.K.
        • Gram H.
        • Marklund N.
        Neutralization of interleukin-1β reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice.
        Eur. J. Neurosci. 2011; 34: 110-123https://doi.org/10.1111/j.1460-9568.2011.07723.x
        • Colombo E.
        • Farina C.
        Astrocytes: key regulators of neuroinflammation.
        Trends Immunol. 2016; 37: 608-620https://doi.org/10.1016/j.it.2016.06.006
        • Cox A.L.
        • Coles A.J.
        • Nortje J.
        • Bradley P.G.
        • Chatfield D.A.
        • Thompson S.J.
        • Menon D.K.
        An investigation of auto-reactivity after head injury.
        J. Neuroimmunol. 2006; 174: 180-186https://doi.org/10.1016/j.jneuroim.2006.01.007
        • D'Agostino P.M.
        • Gottfried-Blackmore A.
        • Anandasabapathy N.
        • Bulloch K.
        Brain dendritic cells: biology and pathology.
        Acta Neuropathol. (Berl.). 2012; 124: 599-614https://doi.org/10.1007/s00401-012-1018-0
        • Dahm L.
        • Ott C.
        • Steiner J.
        • Stepniak B.
        • Teegen B.
        • Saschenbrecker S.
        • Hammer C.
        • Borowski K.
        • Begemann M.
        • Lemke S.
        • Rentzsch K.
        • Probst C.
        • Martens H.
        • Wienands J.
        • Spalletta G.
        • Weissenborn K.
        • Stöcker W.
        • Ehrenreich H.
        Seroprevalence of autoantibodies against brain antigens in health and disease.
        Ann. Neurol. 2014; 76: 82-94https://doi.org/10.1002/ana.24189
        • Detlav I.E.
        Anti-brain antibodies in serum and cerebrospinal fluid following cranio-cerebral trauma.
        Zhurnal Nevropatol. Psikhiatrii Im. SS Korsakova Mosc. Russ. 1976; 1952: 344-348
        • Diamond M.L.
        • Ritter A.C.
        • Failla M.D.
        • Boles J.A.
        • Conley Y.P.
        • Kochanek P.M.
        • Wagner A.K.
        IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study.
        Epilepsia. 2014; 55: 1109-1119https://doi.org/10.1111/epi.12628
        • Dinkel K.
        • Dhabhar F.S.
        • Sapolsky R.M.
        Neurotoxic effects of polymorphonuclear granulocytes on hippocampal primary cultures.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 331-336https://doi.org/10.1073/pnas.0303510101
        • Dodel R.
        • Balakrishnan K.
        • Keyvani K.
        • Deuster O.
        • Neff F.
        • Andrei-Selmer L.-C.
        • Röskam S.
        • Stüer C.
        • Al-Abed Y.
        • Noelker C.
        • Balzer-Geldsetzer M.
        • Oertel W.
        • Du Y.
        • Bacher M.
        Naturally occurring autoantibodies against β-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer's disease.
        J. Neurosci. 2011; 31: 5847-5854https://doi.org/10.1523/JNEUROSCI.4401-10.2011
        • Domingues P.H.
        • Teodósio C.
        • Ortiz J.
        • Sousa P.
        • Otero Á.
        • Maillo A.
        • Bárcena P.
        • García-Macias M.C.
        • Lopes M.C.
        • de Oliveira C.
        • Orfao A.
        • Tabernero M.D.
        Immunophenotypic identification and characterization of tumor cells and infiltrating cell populations in meningiomas.
        Am. J. Pathol. 2012; 181: 1749-1761https://doi.org/10.1016/j.ajpath.2012.07.033
        • Dreßler J.
        • Hanisch U.
        • Kuhlisch E.
        • Geiger K.D.
        Neuronal and glial apoptosis in human traumatic brain injury.
        Int. J. Legal Med. 2007; 121: 365-375https://doi.org/10.1007/s00414-006-0126-6
        • Dunn S.L.
        • Young E.A.
        • Hall M.D.
        • McNulty S.
        Activation of astrocyte intracellular signaling pathways by interleukin-1 in rat primary striatal cultures.
        Glia. 2002; 37: 31-42https://doi.org/10.1002/glia.10010
        • Engel S.
        • Schluesener H.
        • Mittelbronn M.
        • Seid K.
        • Adjodah D.
        • Wehner H.D.
        • Meyermann R.
        Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14.
        Acta Neuropathol. (Berl.). 2000; 100: 313-322
        • Engelhardt B.
        • Ransohoff R.M.
        The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms.
        Trends Immunol. 2005; 26: 485-495https://doi.org/10.1016/j.it.2005.07.004
        • Erickson M.A.
        • Banks W.A.
        Neuroimmune axes of the blood–brain barriers and blood–brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions.
        Pharmacol. Rev. 2018; 70: 278-314https://doi.org/10.1124/pr.117.014647
        • Faden A.I.
        • Loane D.J.
        Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation?.
        Neurotherapeutics. 2015; 12: 143-150https://doi.org/10.1007/s13311-014-0319-5
        • Febinger H.Y.
        • Thomasy H.E.
        • Pavlova M.N.
        • Ringgold K.M.
        • Barf P.R.
        • George A.M.
        • Grillo J.N.
        • Bachstetter A.D.
        • Garcia J.A.
        • Cardona A.E.
        • Opp M.R.
        • Gemma C.
        Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury.
        J. Neuroinflammation. 2015; 12https://doi.org/10.1186/s12974-015-0386-5
        • Fee D.
        • Crumbaugh A.
        • Jacques T.
        • Herdrich B.
        • Sewell D.
        • Auerbach D.
        • Piaskowski S.
        • Hart M.N.
        • Sandor M.
        • Fabry Z.
        Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury.
        J. Neuroimmunol. 2003; 136: 54-66https://doi.org/10.1016/S0165-5728(03)00008-0
        • Fletcher J.M.
        • Lalor S.J.
        • Sweeney C.M.
        • Tubridy N.
        • Mills K.H.G.
        T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.
        Clin. Exp. Immunol. 2010; 162: 1-11https://doi.org/10.1111/j.1365-2249.2010.04143.x
        • Fluiter K.
        • Opperhuizen A.L.
        • Morgan B.P.
        • Baas F.
        • Ramaglia V.
        Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice.
        J. Immunol. 2014; 192: 2339-2348https://doi.org/10.4049/jimmunol.1302793
        • Frieler R.A.
        • Nadimpalli S.
        • Boland L.K.
        • Xie A.
        • Kooistra L.J.
        • Song J.
        • Chung Y.
        • Cho K.W.
        • Lumeng C.N.
        • Wang M.M.
        • Mortensen R.M.
        Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury.
        Brain Res. 2015; 1624: 103-112https://doi.org/10.1016/j.brainres.2015.07.011
        • Gao C.
        • Qian Y.
        • Huang J.
        • Wang D.
        • Su W.
        • Wang P.
        • Guo L.
        • Quan W.
        • An S.
        • Zhang J.
        • Jiang R.
        A three-day consecutive fingolimod administration improves neurological functions and modulates multiple immune responses of CCI mice.
        Mol. Neurobiol. 2016; : 1-13https://doi.org/10.1007/s12035-016-0318-0
        • Gelderblom M.
        • Arunachalam P.
        • Magnus T.
        γδ T cells as early sensors of tissue damage and mediators of secondary neurodegeneration.
        Front. Cell. Neurosci. 2014; 8https://doi.org/10.3389/fncel.2014.00368
        • Gold M.
        • Pul R.
        • Bach J.-P.
        • Stangel M.
        • Dodel R.
        Pathogenic and physiological autoantibodies in the central nervous system.
        Immunol. Rev. 2012; 248: 68-86https://doi.org/10.1111/j.1600-065X.2012.01128.x
        • Goryunova A.V.
        • Bazarnaya N.A.
        • Sorokina E.G.
        • Semenova N.Y.
        • Globa O.V.
        • Semenova Z.B.
        • Pinelis V.G.
        • Roshal' L.M.
        • Maslova O.I.
        Glutamate receptor autoantibody concentrations in children with chronic post-traumatic headache.
        Neurosci. Behav. Physiol. 2007; 37: 761-764https://doi.org/10.1007/s11055-007-0079-3
        • Groux H.
        • Cottrez F.
        The complex role of interleukin-10 in autoimmunity.
        J. Autoimmun. 2003; 20: 281-285https://doi.org/10.1016/S0896-8411(03)00044-1
        • Gyoneva S.
        • Kim D.
        • Katsumoto A.
        • Kokiko-Cochran O.N.
        • Lamb B.T.
        • Ransohoff R.M.
        Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury.
        J. Neuroinflammation. 2015; 12https://doi.org/10.1186/s12974-015-0443-0
        • Hailer N.P.
        Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells.
        Prog. Neurobiol. 2008; 84: 211-233https://doi.org/10.1016/j.pneurobio.2007.12.001
        • Hammarberg H.
        • Lidman O.
        • Lundberg C.
        • Eltayeb S.Y.
        • Gielen A.W.
        • Muhallab S.
        • Svenningsson A.
        • Lindå H.
        • van der Meide P.H.
        • Cullheim S.
        • Olsson T.
        • Piehl F.
        Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells.
        J. Neurosci. 2000; 20: 5283-5291
        • Hammond F.M.
        • Grattan K.D.
        • Sasser H.
        • Corrigan J.D.
        • Rosenthal M.
        • Bushnik T.
        • Shull W.
        Five years after traumatic brain injury: a study of individual outcomes and predictors of change in function.
        NeuroRehabilitation. 2004; 19: 25-35
        • Hanisch U.-K.
        • Kettenmann H.
        Microglia: active sensor and versatile effector cells in the normal and pathologic brain.
        Nat. Neurosci. 2007; 10: 1387https://doi.org/10.1038/nn1997
        • Hao J.
        • Campagnolo D.
        • Liu R.
        • Piao W.
        • Shi S.
        • Hu B.
        • Xiang R.
        • Zhou Q.
        • Vollmer T.
        • Van Kaer L.
        • La Cava A.
        • Shi F.-D.
        IL-2/IL-2 Ab therapy induces target organ NK cells that inhibit CNS inflammation.
        Ann. Neurol. 2011; 69: 721-734https://doi.org/10.1002/ana.22339
        • Harling-Berg C.
        • Knopf P.M.
        • Merriam J.
        • Cserr H.F.
        Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid.
        J. Neuroimmunol. 1989; 25: 185-193
        • Hauben E.
        • Butovsky O.
        • Nevo U.
        • Yoles E.
        • Moalem G.
        • Agranov E.
        • Mor F.
        • Leibowitz-Amit R.
        • Pevsner E.
        • Akselrod S.
        • Neeman M.
        • Cohen I.R.
        • Schwartz M.
        Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion.
        J. Neurosci. 2000; 20: 6421-6430
        • Hauben E.
        • Agranov E.
        • Gothilf A.
        • Nevo U.
        • Cohen A.
        • Smirnov I.
        • Steinman L.
        • Schwartz M.
        Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease.
        J. Clin. Invest. 2001; 108: 591-599https://doi.org/10.1172/JCI12837
        • Hay J.R.
        • Johnson V.E.
        • Young A.M.H.
        • Smith D.H.
        • Stewart W.
        Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans.
        J. Neuropathol. Exp. Neurol. 2015; 74: 1147-1157https://doi.org/10.1093/jnen/74.12.1147
        • Helmy A.
        • Carpenter K.L.
        • Menon D.K.
        • Pickard J.D.
        • Hutchinson P.J.
        The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production.
        J. Cereb. Blood Flow Metab. 2011; 31: 658-670
        • Helmy A.
        • De Simoni M.-G.
        • Guilfoyle M.R.
        • Carpenter K.L.H.
        • Hutchinson P.J.
        Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury.
        Prog. Neurobiol. 2011; 95: 352-372https://doi.org/10.1016/j.pneurobio.2011.09.003
        • Helmy A.
        • Guilfoyle M.R.
        • Carpenter K.L.H.
        • Pickard J.D.
        • Menon D.K.
        • Hutchinson P.J.
        Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2014; 34: 845-851https://doi.org/10.1038/jcbfm.2014.23
        • Hemphill M.A.
        • Dauth S.
        • Yu C.J.
        • Dabiri B.E.
        • Parker K.K.
        Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction.
        Neuron. 2015; 85: 1177-1192https://doi.org/10.1016/j.neuron.2015.02.041
        • Hickey William F.
        Basic principles of immunological surveillance of the normal central nervous system.
        Glia. 2001; 36: 118-124https://doi.org/10.1002/glia.1101
        • Himanen L.
        • Portin R.
        • Isoniemi H.
        • Helenius H.
        • Kurki T.
        • Tenovuo O.
        Longitudinal cognitive changes in traumatic brain injury: a 30-year follow-up study.
        Neurology. 2006; 66: 187-192https://doi.org/10.1212/01.wnl.0000194264.60150.d3
        • Hofstetter H.H.
        • Sewell D.L.
        • Liu F.
        • Sandor M.
        • Forsthuber T.
        • Lehmann P.V.
        • Fabry Z.
        Autoreactive T cells promote post-traumatic healing in the central nervous system.
        J. Neuroimmunol. 2003; 134: 25-34
        • Holmin S.
        • Mathiesen T.
        • Shetye J.
        • Biberfeld P.
        Intracerebral inflammatory response to experimental brain contusion.
        Acta Neurochir. 1995; 132: 110-119
        • Holmin S.
        • Söderlund J.
        • Biberfeld P.
        • Mathiesen T.
        Intracerebral inflammation after human brain contusion.
        Neurosurgery. 1998; 42 (discussion 298-299): 291-298
        • Homsi S.
        • Piaggio T.
        • Croci N.
        • Noble F.
        • Plotkine M.
        • Marchand-Leroux C.
        • Jafarian-Tehrani M.
        Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study.
        J. Neurotrauma. 2010; 27: 911-921https://doi.org/10.1089/neu.2009.1223
        • Hsieh C.L.
        • Kim C.C.
        • Ryba B.E.
        • Niemi E.C.
        • Bando J.K.
        • Locksley R.M.
        • Liu J.
        • Nakamura M.C.
        • Seaman W.E.
        Traumatic brain injury induces macrophage subsets in the brain.
        Eur. J. Immunol. 2013; 43: 2010-2022https://doi.org/10.1002/eji.201243084
        • Hsieh C.L.
        • Niemi E.C.
        • Wang S.H.
        • Lee C.C.
        • Bingham D.
        • Zhang J.
        • Cozen M.L.
        • Charo I.
        • Huang E.J.
        • Liu J.
        • Nakamura M.C.
        CCR2 deficiency impairs macrophage infiltration and improves cognitive function after traumatic brain injury.
        J. Neurotrauma. 2014; 31: 1677-1688https://doi.org/10.1089/neu.2013.3252
        • Hu X.
        • Leak R.K.
        • Shi Y.
        • Suenaga J.
        • Gao Y.
        • Zheng P.
        • Chen J.
        Microglial and macrophage polarization-new prospects for brain repair.
        Nat. Rev. Neurol. 2015; 11: 56-64https://doi.org/10.1038/nrneurol.2014.207
        • Irrera N.
        • Pizzino G.
        • Calò M.
        • Pallio G.
        • Mannino F.
        • Famà F.
        • Arcoraci V.
        • Fodale V.
        • David A.
        • Francesca C.
        • Minutoli L.
        • Mazzon E.
        • Bramanti P.
        • Squadrito F.
        • Altavilla D.
        • Bitto A.
        Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury.
        Front. Pharmacol. 2017; 8https://doi.org/10.3389/fphar.2017.00459
        • Jennett B.
        Epidemiology of head injury.
        J. Neurol. Neurosurg. Psychiatry. 1996; 60: 362-369
        • Jin X.
        • Ishii H.
        • Bai Z.
        • Itokazu T.
        • Yamashita T.
        Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice.
        PLoS One. 2012; 7e41892https://doi.org/10.1371/journal.pone.0041892
        • Johnson Victoria E.
        • Stewart J.E.
        • Begbie F.D.
        • Trojanowski J.Q.
        • Smith D.H.
        • Stewart W.
        Inflammation and white matter degeneration persist for years after a single traumatic brain injury.
        Brain. 2013; 136: 28-42https://doi.org/10.1093/brain/aws322
        • Jones T.B.
        Lymphocytes and autoimmunity after spinal cord injury.
        Spec. Issue Neuroimmunol. Spinal Cord Inj. 2014; 258: 78-90https://doi.org/10.1016/j.expneurol.2014.03.003
        • Jones T.B.
        • Basso D.M.
        • Sodhi A.
        • Pan J.Z.
        • Hart R.P.
        • MacCallum R.C.
        • Lee S.
        • Whitacre C.C.
        • Popovich P.G.
        Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy.
        J. Neurosci. 2002; 22: 2690-2700
        • Jones T.B.
        • Ankeny D.P.
        • Guan Z.
        • McGaughy V.
        • Fisher L.C.
        • Basso D.M.
        • Popovich P.G.
        Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats.
        J. Neurosci. 2004; 24: 3752-3761https://doi.org/10.1523/JNEUROSCI.0406-04.2004
        • Jr E.T.C.
        • Kilmartin D.
        • Agarwal M.
        • Zierhut M.
        Sympathetic ophthalmia.
        Ocul. Immunol. Inflamm. 2017; 25: 149-151https://doi.org/10.1080/09273948.2017.1305727
        • Kawabori M.
        • Yenari M.A.
        The role of the microglia in acute CNS injury.
        Metab. Brain Dis. 2015; 30: 381-392https://doi.org/10.1007/s11011-014-9531-6
        • Kellner A.
        • Matschke J.
        • Bernreuther C.
        • Moch H.
        • Ferrer I.
        • Glatzel M.
        Autoantibodies against β-amyloid are common in Alzheimer's disease and help control plaque burden.
        Ann. Neurol. 2009; 65: 24-31https://doi.org/10.1002/ana.21475
        • Kenne E.
        • Erlandsson A.
        • Lindbom L.
        • Hillered L.
        • Clausen F.
        Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice.
        J. Neuroinflammation. 2012; 9https://doi.org/10.1186/1742-2094-9-17
        • Khuman J.
        • Meehan W.P.
        • Zhu X.
        • Qiu J.
        • Hoffmann U.
        • Zhang J.
        • Giovannone E.
        • Lo E.H.
        • Whalen M.J.
        Tumor necrosis factor alpha and Fas receptor contribute to cognitive deficits independent of cell death after concussive traumatic brain injury in mice.
        J. Cereb. Blood Flow Metab. 2011; 31: 778-789https://doi.org/10.1038/jcbfm.2010.172
        • Kim C.C.
        • Nakamura M.C.
        • Hsieh C.L.
        Brain trauma elicits non-canonical macrophage activation states.
        J. Neuroinflammation. 2016; 13https://doi.org/10.1186/s12974-016-0581-z
        • Kimbler D.E.
        • Shields J.
        • Yanasak N.
        • Vender J.R.
        • Dhandapani K.M.
        Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice.
        PLoS One. 2012; 7https://doi.org/10.1371/journal.pone.0041229
        • Kipnis J.
        • Yoles E.
        • Schori H.
        • Hauben E.
        • Shaked I.
        • Schwartz M.
        Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response.
        J. Neurosci. 2001; 21: 4564-4571
        • Kirchhoff C.
        • Buhmann S.
        • Bogner V.
        • Stegmaier J.
        • Leidel B.A.
        • Braunstein V.
        • Mutschler W.
        • Biberthaler P.
        Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury.
        Eur. J. Med. Res. 2008; 13: 464-468
        • Knoblach S.M.
        • Faden A.I.
        Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury.
        Exp. Neurol. 1998; 153: 143-151https://doi.org/10.1006/exnr.1998.6877
        • Knopf P.M.
        • Harling-Berg C.J.
        • Cserr H.F.
        • Basu D.
        • Sirulnick E.J.
        • Nolan S.C.
        • Park J.T.
        • Keir G.
        • Thompson E.J.
        • Hickey W.F.
        Antigen-dependent intrathecal antibody synthesis in the normal rat brain: tissue entry and local retention of antigen-specific B cells.
        J. Immunol. 1998; 161: 692-701
        • Kobayashi K.
        • Imagama S.
        • Ohgomori T.
        • Hirano K.
        • Uchimura K.
        • Sakamoto K.
        • Hirakawa A.
        • Takeuchi H.
        • Suzumura A.
        • Ishiguro N.
        • Kadomatsu K.
        Minocycline selectively inhibits M1 polarization of microglia.
        Cell Death Dis. 2013; 4: e525https://doi.org/10.1038/cddis.2013.54
        • Kolaczkowska E.
        • Kubes P.
        Neutrophil recruitment and function in health and inflammation.
        Nat. Rev. Immunol. 2013; 13: 159https://doi.org/10.1038/nri3399
        • Koutsilieri E.
        • Lutz M.B.
        • Scheller C.
        Autoimmunity, dendritic cells and relevance for Parkinson's disease.
        J. Neural Transm. 2012; 120: 75-81https://doi.org/10.1007/s00702-012-0842-7
        • Kumar Raj G.
        • Boles J.A.
        • Wagner A.K.
        Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury.
        J. Head Trauma Rehabil. 2015; 30: 369-381https://doi.org/10.1097/HTR.0000000000000067
        • Kumar R.G.
        • Diamond M.L.
        • Boles J.A.
        • Berger R.P.
        • Tisherman S.A.
        • Kochanek P.M.
        • Wagner A.K.
        Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome.
        Brain Behav. Immun. 2015; 45: 253-262https://doi.org/10.1016/j.bbi.2014.12.021
        • Kushi H.
        • Saito T.
        • Makino K.
        • Hayashi N.
        L-8 is a key mediator of neuroinflammation in severe traumatic brain injuries.
        in: Brain Edema X.I.I. Acta Neurochirurgica Supplements. Springer, Vienna2003: 347-350https://doi.org/10.1007/978-3-7091-0651-8_74
        • Laird M.D.
        • Shields J.S.
        • Sukumari-Ramesh S.
        • Kimbler D.E.
        • Fessler R.D.
        • Shakir B.
        • Youssef P.
        • Yanasak N.
        • Vender J.R.
        • Dhandapani K.M.
        High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4.
        Glia. 2014; 62: 26-38https://doi.org/10.1002/glia.22581
        • Land W.G.
        The role of damage-associated molecular patterns in human diseases.
        Sultan Qaboos Univ. Med. J. 2015; 15: e9-e21
        • Lavisse S.
        • Guillermier M.
        • Hérard A.-S.
        • Petit F.
        • Delahaye M.
        • Camp N.V.
        • Haim L.B.
        • Lebon V.
        • Remy P.
        • Dollé F.
        • Delzescaux T.
        • Bonvento G.
        • Hantraye P.
        • Escartin C.
        Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging.
        J. Neurosci. 2012; 32: 10809-10818https://doi.org/10.1523/JNEUROSCI.1487-12.2012
        • Li W.
        • Chen S.-C.
        • Wang Z.-G.
        • Song X.-B.
        • Wang Y.-P.
        • Zhang M.
        Relationship between anti-myelin basic protein antibody and myelinoclasis in rat brain stem after brain trauma.
        Nan Fang Yi Ke Da Xue Xue Bao. 2008; 28: 1028-1030
        • Li M.
        • Lin Y.-P.
        • Chen J.-L.
        • Li H.
        • Jiang R.-C.
        • Zhang J.-N.
        Role of regulatory T cell in clinical outcome of traumatic brain injury.
        Chin. Med. J. 2015; 128: 1072-1078https://doi.org/10.4103/0366-6999.155094
        • Lindbom L.
        Regulation of vascular permeability by neutrophils in acute inflammation.
        Chem. Immunol. Allergy. 2003; 83: 146-166
        • Ling C.
        Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS.
        J. Neurosci. 2006; 26: 731-741https://doi.org/10.1523/JNEUROSCI.3502-05.2006
        • Lingsma H.F.
        • Roozenbeek B.
        • Steyerberg E.W.
        • Murray G.D.
        • Maas A.I.
        Early prognosis in traumatic brain injury: from prophecies to predictions.
        Lancet Neurol. 2010; 9: 543-554https://doi.org/10.1016/S1474-4422(10)70065-X
        • Lisianyĭ N.I.
        • Cheren'ko T.M.
        • Terletskaia I.T.
        Detection of antibodies to myelin basic proteins in patients with closed cranio-cerebral trauma.
        Vrach. Delo. 1987; : 101-104
        • Livshits L.I.
        • Shakarova G.G.
        Clinico-diagnostic significance of autoimmune reactions in patients with cranio-cerebral injury.
        Vopr. Neĭrokhirurgii. 1975; : 33-37
        • Loane D.J.
        • Kumar A.
        • Stoica B.A.
        • Cabatbat R.
        • Faden A.I.
        Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation.
        J. Neuropathol. Exp. Neurol. 2014; 73: 14-29https://doi.org/10.1097/NEN.0000000000000021
        • Lobo-Silva D.
        • Carriche G.M.
        • Castro A.G.
        • Roque S.
        • Saraiva M.
        Balancing the immune response in the brain: IL-10 and its regulation.
        J. Neuroinflammation. 2016; 13https://doi.org/10.1186/s12974-016-0763-8
        • Longhi L.
        • Perego C.
        • Ortolano F.
        • Aresi S.
        • Fumagalli S.
        • Zanier E.R.
        • Stocchetti N.
        • De Simoni M.-G.
        Tumor necrosis factor in traumatic brain injury: effects of genetic deletion of p55 or p75 receptor.
        J. Cereb. Blood Flow Metab. 2013; 33: 1182-1189https://doi.org/10.1038/jcbfm.2013.65
        • López-Escribano H.
        • Miñambres E.
        • Labrador M.
        • Bartolomé M.J.
        • López-Hoyos M.
        Induction of cell death by sera from patients with acute brain injury as a mechanism of production of autoantibodies: Cell Death Induction and Autoantibody Production.
        Arthritis Rheum. 2002; 46: 3290-3300https://doi.org/10.1002/art.10684
        • Lull M.E.
        • Block M.L.
        Microglial activation and chronic neurodegeneration.
        Neurotherapeutics. 2010; 7: 354-365https://doi.org/10.1016/j.nurt.2010.05.014
        • Lünemann A.
        • Lünemann J.D.
        • Roberts S.
        • Messmer B.
        • da Silva R.B.
        • Raine C.S.
        • Münz C.
        Human NK cells kill resting but not activated microglia via NKG2D and NKp46 mediated recognition.
        J. Immunol. Baltim. Md. 2008; 181: 6170-6177
        • Maas A.I.R.
        • Murray G.
        • Henney H.
        • Kassem N.
        • Legrand V.
        • Mangelus M.
        • Muizelaar J.-P.
        • Stocchetti N.
        • Knoller N.
        • investigators Pharmos T.B.I.
        Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial.
        Lancet Neurol. 2006; 5: 38-45https://doi.org/10.1016/S1474-4422(05)70253-2
        • Magliozzi R.
        • Howell O.
        • Vora A.
        • Serafini B.
        • Nicholas R.
        • Puopolo M.
        • Reynolds R.
        • Aloisi F.
        Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology.
        Brain. 2007; 130: 1089-1104https://doi.org/10.1093/brain/awm038
        • Makinde H.M.
        • Cuda C.M.
        • Just T.B.
        • Perlman H.R.
        • Schwulst S.J.
        Nonclassical monocytes mediate secondary injury, neurocognitive outcome, and neutrophil infiltration after traumatic brain injury.
        J. Immunol. 2017; 199: 3583-3591https://doi.org/10.4049/jimmunol.1700896
        • Mannino M.H.
        • Zhu Z.
        • Xiao H.
        • Bai Q.
        • Wakefield M.R.
        • Fang Y.
        The paradoxical role of IL-10 in immunity and cancer.
        Cancer Lett. 2015; 367: 103-107https://doi.org/10.1016/j.canlet.2015.07.009
        • Maphis N.
        • Xu G.
        • Kokiko-Cochran O.N.
        • Jiang S.
        • Cardona A.
        • Ransohoff R.M.
        • Lamb B.T.
        • Bhaskar K.
        Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain.
        Brain. 2015; 138: 1738-1755https://doi.org/10.1093/brain/awv081
        • Marchi N.
        • Bazarian J.J.
        • Puvenna V.
        • Janigro M.
        • Ghosh C.
        • Zhong J.
        • Zhu T.
        • Blackman E.
        • Stewart D.
        • Ellis J.
        • Butler R.
        • Janigro D.
        Consequences of repeated blood-brain barrier disruption in football players.
        PLoS One. 2013; 8e56805https://doi.org/10.1371/journal.pone.0056805
        • Millis S.R.
        • Rosenthal M.
        • Novack T.A.
        • Sherer M.
        • Nick T.G.
        • Kreutzer J.S.
        • High Jr., W.M.
        • Ricker J.H.
        Long-term neuropsychological outcome after traumatic brain injury.
        J. Head Trauma Rehabil. 2001; 16: 343-355
        • Moalem G.
        • Leibowitz–Amit R.
        • Yoles E.
        • Mor F.
        • Cohen I.R.
        • Schwartz M.
        Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy.
        Nat. Med. 1999; 5: 49-55https://doi.org/10.1038/4734
        • Mondello S.
        • Sorinola A.
        • Czeiter E.
        • Vámos Z.
        • Amrein K.
        • Synnot A.
        • Donoghue E.L.
        • Sándor J.
        • Wang K.K.W.
        • Diaz-Arrastia R.
        • Steyerberg E.W.
        • Menon D.
        • Maas A.
        • Buki A.
        Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting with mild head injury to emergency departments: a living systematic review and meta-analysis.
        J. Neurotrauma. 2017; https://doi.org/10.1089/neu.2017.5182
        • Morganti J.M.
        • Jopson T.D.
        • Liu S.
        • Riparip L.-K.
        • Guandique C.K.
        • Gupta N.
        • Ferguson A.R.
        • Rosi S.
        CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury.
        J. Neurosci. 2015; 35: 748-760https://doi.org/10.1523/JNEUROSCI.2405-14.2015
        • Morganti J.M.
        • Riparip L.-K.
        • Rosi S.
        Call Off the Dog(ma): M1/M2 polarization is concurrent following traumatic brain injury.
        PLoS One. 2016; 11e0148001https://doi.org/10.1371/journal.pone.0148001
        • Morozov S.G.
        • Asanova L.M.
        • Gnedenko B.B.
        • Panchenko L.F.
        • Lavrova T.N.
        Autoantibodies against nerve tissue proteins long after cranio-cerebral injury.
        Vopr. Medit︠s︡inskoĭ Khimii. 1996; 42: 147-152
        • Mortezaee K.
        • Khanlarkhani N.
        • Beyer C.
        • Zendedel A.
        Inflammasome: its role in traumatic brain and spinal cord injury.
        J. Cell. Physiol. 2018; 233: 5160-5169https://doi.org/10.1002/jcp.26287
        • Murphy Á.C.
        • Lalor S.J.
        • Lynch M.A.
        • Mills K.H.G.
        Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.
        Brain Behav. Immun. 2010; 24: 641-651https://doi.org/10.1016/j.bbi.2010.01.014
        • Myer D.J.
        • Gurkoff G.G.
        • Lee S.M.
        • Hovda D.A.
        • Sofroniew M.V.
        Essential protective roles of reactive astrocytes in traumatic brain injury.
        Brain. 2006; 129: 2761-2772https://doi.org/10.1093/brain/awl165
        • Neniskyte U.
        • Vilalta A.
        • Brown G.C.
        Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis.
        FEBS Lett. 2014; 588: 2952-2956https://doi.org/10.1016/j.febslet.2014.05.046
        • Neumann H.
        • Kotter M.R.
        • Franklin R.J.M.
        Debris clearance by microglia: an essential link between degeneration and regeneration.
        Brain. 2008; 132: 288-295https://doi.org/10.1093/brain/awn109
        • Ngankam L.
        • Kazantseva N.V.
        • Gerasimova M.M.
        [Immunological markers of severity and outcome of traumatic brain injury]. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova Minist. Zdr. Meditsinskoĭ Promyshlennosti Ross. Fed. Vserossiĭskoe Obshchestvo Nevrol.
        Vserossiĭskoe Obshchestvo Psikhiatrov. 2011; 111: 61-65
        • Nguyen H.X.
        • O’Barr T.J.
        • Anderson A.J.
        Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha.
        J. Neurochem. 2007; 102: 900-912https://doi.org/10.1111/j.1471-4159.2007.04643.x
        • Nielsen H.H.
        • Ladeby R.
        • Fenger C.
        • Toft-Hansen H.
        • Babcock A.A.
        • Owens T.
        • Finsen B.
        enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system.
        J. Neuropathol. Exp. Neurol. 2009; 68: 845-856https://doi.org/10.1097/NEN.0b013e3181ae0236
        • Oberländer U.
        • Pletinckx K.
        • Döhler A.
        • Müller N.
        • Lutz M.B.
        • Arzberger T.
        • Riederer P.
        • Gerlach M.
        • Koutsilieri E.
        • Scheller C.
        Neuromelanin is an immune stimulator for dendritic cells in vitro.
        BMC Neurosci. 2011; 12: 116https://doi.org/10.1186/1471-2202-12-116
        • Okuma Y.
        • Liu K.
        • Wake H.
        • Zhang J.
        • Maruo T.
        • Date I.
        • Yoshino T.
        • Ohtsuka A.
        • Otani N.
        • Tomura S.
        • Shima K.
        • Yamamoto Y.
        • Yamamoto H.
        • Takahashi H.K.
        • Mori S.
        • Nishibori M.
        Anti–high mobility group box-1 antibody therapy for traumatic brain injury.
        Ann. Neurol. 2012; 72: 373-384https://doi.org/10.1002/ana.23602
        • Olson J.K.
        • Miller S.D.
        Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs.
        J. Immunol. 2004; 173: 3916-3924https://doi.org/10.4049/jimmunol.173.6.3916
        • Pearn M.L.
        • Niesman I.R.
        • Egawa J.
        • Sawada A.
        • Almenar-Queralt A.
        • Shah S.B.
        • Duckworth J.L.
        • Head B.P.
        Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics.
        Cell. Mol. Neurobiol. 2017; 37: 571-585https://doi.org/10.1007/s10571-016-0400-1
        • Penkowa M.
        • Giralt M.
        • Carrasco J.
        • Hadberg H.
        • Hidalgo J.
        Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice.
        Glia. 2000; 32: 271-285
        • Penkowa M.
        • Giralt M.
        • Lago N.
        • Camats J.
        • Carrasco J.
        • Hernández J.
        • Molinero A.
        • Campbell I.L.
        • Hidalgo J.
        Astrocyte-targeted expression of IL-6 protects the CNSagainst a focal brain injury.
        Exp. Neurol. 2003; 181: 130-148https://doi.org/10.1016/S0014-4886(02)00051-1
        • Piazza F.
        • Greenberg S.M.
        • Savoiardo M.
        • Gardinetti M.
        • Chiapparini L.
        • Raicher I.
        • Nitrini R.
        • Sakaguchi H.
        • Brioschi M.
        • Billo G.
        • Colombo A.
        • Lanzani F.
        • Piscosquito G.
        • Carriero M.R.
        • Giaccone G.
        • Tagliavini F.
        • Ferrarese C.
        • DiFrancesco J.C.
        Anti–amyloid β autoantibodies in cerebral amyloid angiopathy–related inflammation: Implications for amyloid-modifying therapies.
        Ann. Neurol. 2013; 73: 449-458https://doi.org/10.1002/ana.23857
        • Pischiutta F.
        • Micotti E.
        • Hay J.R.
        • Marongiu I.
        • Sammali E.
        • Tolomeo D.
        • Vegliante G.
        • Stocchetti N.
        • Forloni G.
        • De Simoni M.-G.
        • Stewart W.
        • Zanier E.R.
        Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury.
        Exp. Neurol. 2018; 300: 167-178https://doi.org/10.1016/j.expneurol.2017.11.003
        • Plog B.A.
        • Dashnaw M.L.
        • Hitomi E.
        • Peng W.
        • Liao Y.
        • Lou N.
        • Deane R.
        • Nedergaard M.
        Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.
        J. Neurosci. 2015; 35: 518-526https://doi.org/10.1523/JNEUROSCI.3742-14.2015
        • Procházka M.
        • Voltnerová M.
        • Stefan J.
        Studies of immunologic reactions after brain injury. II. Antibodies against brain tissue lipids after blunt head injury in man.
        Int. Surg. 1971; 55: 322-326
        • Ramlackhansingh A.F.
        • Brooks D.J.
        • Greenwood R.J.
        • Bose S.K.
        • Turkheimer F.E.
        • Kinnunen K.M.
        • Gentleman S.
        • Heckemann R.A.
        • Gunanayagam K.
        • Gelosa G.
        • Sharp D.J.
        Inflammation after trauma: Microglial activation and traumatic brain injury.
        Ann. Neurol. 2011; 70: 374-383https://doi.org/10.1002/ana.22455
        • Ransohoff R.M.
        How neuroinflammation contributes to neurodegeneration.
        Science. 2016; 353: 777-783https://doi.org/10.1126/science.aag2590
        • Rodriguez M.
        • Warrington A.E.
        • Pease L.R.
        Invited article: human natural autoantibodies in the treatment of neurologic disease.
        Neurology. 2009; 72: 1269-1276https://doi.org/10.1212/01.wnl.0000345662.05861.e4
        • Rudehill S.
        • Muhallab S.
        • Wennersten A.
        • von Gertten C.
        • Al Nimer F.
        • Sandberg-Nordqvist A.C.
        • Holmin S.
        • Mathiesen T.
        Autoreactive antibodies against neurons and basal lamina found in serum following experimental brain contusion in rats.
        Acta Neurochir. 2006; 148: 199-205https://doi.org/10.1007/s00701-005-0673-5
        • Ruff R.M.
        • Young D.
        • Gautille T.
        • Marshall L.F.
        • Barth J.
        • Jane J.A.
        • Kreutzer J.
        • Marmarou A.
        • Levin H.S.
        • Eisenberg H.M.
        • Foulkes M.A.
        Verbal learning deficits following severe head injury: heterogeneity in recovery over 1 year.
        Spec. Suppl. 1991; 75: S50-S58https://doi.org/10.3171/sup.1991.75.1s.0s50
        • Saadoun S.
        • Waters P.
        • Bell B.A.
        • Vincent A.
        • Verkman A.S.
        • Papadopoulos M.C.
        Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice.
        Brain. 2010; 133: 349-361https://doi.org/10.1093/brain/awp309
        • Saijo K.
        • Glass C.K.
        Microglial cell origin and phenotypes in health and disease.
        Nat. Rev. Immunol. 2011; 11: 775-787https://doi.org/10.1038/nri3086
        • Saijo K.
        • Crotti A.
        • Glass C.K.
        Regulation of microglia activation and deactivation by nuclear receptors.
        Glia. 2013; 61: 104-111https://doi.org/10.1002/glia.22423
        • Sanderson K.L.
        • Raghupathi R.
        • Saatman K.E.
        • Martin D.
        • Miller G.
        • McIntosh T.K.
        Interleukin-1 receptor antagonist attenuates regional neuronal cell death and cognitive dysfunction after experimental brain injury.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1999; 19: 1118-1125https://doi.org/10.1097/00004647-199910000-00008
        • Saxena A.
        • Khosraviani S.
        • Noel S.
        • Mohan D.
        • Donner T.
        • Hamad A.R.A.
        Interleukin-10 paradox: A potent immunoregulatory cytokine that has been difficult to harness for immunotherapy.
        Cytokine. 2015; 74: 27https://doi.org/10.1016/j.cyto.2014.10.031
        • Scheller J.
        • Chalaris A.
        • Schmidt-Arras D.
        • Rose-John S.
        The pro- and anti-inflammatory properties of the cytokine interleukin-6.
        Biochim. Biophys. Acta BBA - Mol. Cell Res. 2011; (Including the Special Section: 11th European Symposium on Calcium 1813): 878-888https://doi.org/10.1016/j.bbamcr.2011.01.034
        • Scherbel U.
        • Raghupathi R.
        • Nakamura M.
        • Saatman K.E.
        • Trojanowski J.Q.
        • Neugebauer E.
        • Marino M.W.
        • McIntosh T.K.
        Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury.
        Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 8721-8726
        • Schoettle R.J.
        • Kochanek P.M.
        • Magargee M.J.
        • Uhl M.W.
        • Nemoto E.M.
        Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats.
        J. Neurotrauma. 1990; 7: 207-217https://doi.org/10.1089/neu.1990.7.207
        • Schwartz M.
        Protective autoimmunity as a T-cell response to central nervous system trauma: prospects for therapeutic vaccines.
        Prog. Neurobiol. 2001; 65: 489-496https://doi.org/10.1016/S0301-0082(01)00009-0
        • Scott G.
        • Hellyer P.J.
        • Ramlackhansingh A.F.
        • Brooks D.J.
        • Matthews P.M.
        • Sharp D.J.
        Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage.
        J. Neuroinflammation. 2015; 12https://doi.org/10.1186/s12974-015-0445-y
        • Scott G.
        • Zetterberg H.
        • Jolly A.
        • Cole J.H.
        • De Simoni S.
        • Jenkins P.O.
        • Feeney C.
        • Owen D.R.
        • Lingford-Hughes A.
        • Howes O.
        • Patel M.C.
        • Goldstone A.P.
        • Gunn R.N.
        • Blennow K.
        • Matthews P.M.
        • Sharp D.J.
        Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration.
        Brain. 2018; 141: 459-471https://doi.org/10.1093/brain/awx339
        • Semple B.D.
        • Bye N.
        • Ziebell J.M.
        • Morganti-Kossmann M.C.
        Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury.
        Neurobiol. Dis. 2010; 40: 394-403https://doi.org/10.1016/j.nbd.2010.06.015
        • Semple B.D.
        • Trivedi A.
        • Gimlin K.
        • Noble-Haeusslein L.J.
        Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain.
        Neurobiol. Dis. 2015; 74: 263-280https://doi.org/10.1016/j.nbd.2014.12.003
        • Shamreĭ R.K.
        The value of determining autoantibodies in the diagnosis and expertise of closed brain injury.
        Voen.-Medit︠s︡inskiĭ Zhurnal. 1969; 4: 39-43
        • Shi F.-D.
        • Takeda K.
        • Akira S.
        • Sarvetnick N.
        • Ljunggren H.-G.
        IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN- by NK cells.
        J. Immunol. 2000; 165: 3099-3104https://doi.org/10.4049/jimmunol.165.6.3099
        • Shiozaki T.
        • Hayakata T.
        • Tasaki O.
        • Hosotubo H.
        • Fuijita K.
        • Mouri T.
        • Tajima G.
        • Kajino K.
        • Nakae H.
        • Tanaka H.
        • Shimazu T.
        • Sugimoto H.
        Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury.
        Shock Augusta Ga. 2005; 23: 406-410
        • Shohami E.
        • Bass R.
        • Wallach D.
        • Yamin A.
        • Gallily R.
        Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury.
        J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1996; 16: 378-384https://doi.org/10.1097/00004647-199605000-00004
        • Shohami E.
        • Gallily R.
        • Mechoulam R.
        • Bass R.
        • Ben-Hur T.
        Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant.
        J. Neuroimmunol. 1997; 72: 169-177
        • Sica A.
        • Mantovani A.
        Macrophage plasticity and polarization: in vivo veritas.
        J. Clin. Invest. 2012; 122: 787-795https://doi.org/10.1172/JCI59643
        • Singhal A.
        • Baker A.j.
        • Hare G.m.t.
        • Reinders F.x.
        • Schlichter L.c.
        • Moulton R.j.
        Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury.
        J. Neurotrauma. 2002; 19: 929-937https://doi.org/10.1089/089771502320317087
        • Škoda D.
        • Kranda K.
        • Bojar M.
        • Glosová L.
        • Bäurle J.
        • Kenney J.
        • Romportl D.
        • Pelichovská M.
        • Cvachovec K.
        Antibody formation against β-tubulin class III in response to brain trauma.
        Brain Res. Bull. 2006; 68: 213-216https://doi.org/10.1016/j.brainresbull.2005.05.032
        • Soane L.
        • Cho H.-J.
        • Niculescu F.
        • Rus H.
        • Shin M.L.
        C5b-9 terminal complement complex protects oligodendrocytes from death by regulating bad through phosphatidylinositol 3-kinase/Akt pathway.
        J. Immunol. 2001; 167: 2305-2311https://doi.org/10.4049/jimmunol.167.4.2305
        • Soares H.D.
        • Hicks R.R.
        • Smith D.
        • McIntosh T.K.
        Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury.
        J. Neurosci. 1995; 15: 8223-8233
        • Soares F.M.S.
        • de Souza N.M.
        • Schwarzbold M.L.
        • Diaz A.P.
        • Nunes J.C.
        • Hohl A.
        • da Silva P.N.A.
        • Vieira J.
        • de Souza R.L.
        • Bertotti M.M.
        • Prediger R.D.S.
        • Linhares M.N.
        • Bafica A.
        • Walz R.
        Interleukin-10 is an independent biomarker of severe traumatic brain injury prognosis.
        Neuroimmunomodulation. 2012; 19: 377-385https://doi.org/10.1159/000342141
        • Sorokina E.G.
        • Semenova Z.B.
        • Bazarnaya N.A.
        • Meshcheryakov S.V.
        • Reutov V.P.
        • Goryunova A.V.
        • Pinelis V.G.
        • Granstrem O.K.
        • Roshal L.M.
        Autoantibodies to glutamate receptors and products of nitric oxide metabolism in serum in children in the acute phase of craniocerebral trauma.
        Neurosci. Behav. Physiol. 2009; 39: 329-334https://doi.org/10.1007/s11055-009-9147-1
        • Sorokina E.G.
        • Vol'pina O.M.
        • Semenova Z.B.
        • Karaseva O.V.
        • Koroev D.O.
        • Kamynina A.V.
        • Reutov V.P.
        • Salykina M.A.
        • Panova A.V.
        • Goriunova A.V.
        • Pinelis V.G.
        • Roshal' L.M.
        Autoantibodies to α7-subunit of neuronal acetylcholine receptor in children with traumatic brain injury.
        Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova Minist. Zdr. Meditsinskoĭ Promyshlennosti Ross. Fed. Vserossiĭskoe Obshchestvo Nevrol. Vserossiĭskoe Obshchestvo Psikhiatrov. 2011; 111: 56-60
        • Stahel P.F.
        • Morganti-Kossmann M.C.
        • Perez D.
        • Redaelli C.
        • Gloor B.
        • Trentz O.
        • Kossmann T.
        Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury.
        J. Neurotrauma. 2001; 18: 773-781
        • Stein T.D.
        • Fedynyshyn J.P.
        • Kalil R.E.
        Circulating autoantibodies recognize and bind dying neurons following injury to the brain.
        J. Neuropathol. Exp. Neurol. 2002; 61: 1100-1108https://doi.org/10.1093/jnen/61.12.1100
        • Sullivan P.G.
        • Bruce-Keller A.J.
        • Rabchevsky A.G.
        • Christakos S.
        • Clair D.K.S.
        • Mattson M.P.
        • Scheff S.W.
        Exacerbation of damage and altered NF-κB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury.
        J. Neurosci. 1999; 19: 6248-6256
        • Tanriverdi F.
        • De Bellis A.
        • Bizzarro A.
        • Sinisi A.A.
        • Bellastella G.
        • Pane E.
        • Bellastella A.
        • Unluhizarci K.
        • Selcuklu A.
        • Casanueva F.F.
        • Kelestimur F.
        Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity?.
        Eur. J. Endocrinol. 2008; 159: 7-13https://doi.org/10.1530/EJE-08-0050
        • Tanriverdi F.
        • De Bellis A.
        • Battaglia M.
        • Bellastella G.
        • Bizzarro A.
        • Sinisi A.A.
        • Bellastella A.
        • Unluhizarci K.
        • Selcuklu A.
        • Casanueva F.F.
        • Kelestimur F.
        Investigation of antihypothalamus and antipituitary antibodies in amateur boxers: is chronic repetitive head trauma-induced pituitary dysfunction associated with autoimmunity?.
        Eur. J. Endocrinol. 2010; 162: 861-867https://doi.org/10.1530/EJE-09-1024
        • Tehranian R.
        • Andell-Jonsson S.
        • Beni S.M.
        • Yatsiv I.
        • Shohami E.
        • Bartfai T.
        • Lundkvist J.
        • Iverfeldt K.
        Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist.
        J. Neurotrauma. 2002; 19: 939-951https://doi.org/10.1089/089771502320317096
        • Thelin E.P.
        • Johannesson L.
        • Nelson D.
        • Bellander B.M.
        S100B is an important outcome predictor in traumatic brain injury.
        J. Neurotrauma. 2013 Apr 1; 30: 519-528
        • Tian G.
        • Li J.-L.
        • Wang D.-G.
        • Zhou D.
        Targeting IL-10 in auto-immune diseases.
        Cell Biochem. Biophys. 2014; 70: 37-49https://doi.org/10.1007/s12013-014-9903-x
        • Till C.
        • Colella B.
        • Verwegen J.
        • Green R.E.
        Postrecovery cognitive decline in adults with traumatic brain injury.
        Arch. Phys. Med. Rehabil. 2008; 89: S25-S34https://doi.org/10.1016/j.apmr.2008.07.004
        • Toulmond S.
        • Rothwell N.J.
        Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat.
        Brain Res. 1995; 671: 261-266
        • Turtzo L.C.
        • Lescher J.
        • Janes L.
        • Dean D.D.
        • Budde M.D.
        • Frank J.A.
        Macrophagic and microglial responses after focal traumatic brain injury in the female rat.
        J. Neuroinflammation. 2014; 11: 82https://doi.org/10.1186/1742-2094-11-82
        • Uzan M.
        • Tanriverdi T.
        • Baykara O.
        • Kafadar A.
        • Sanus G.Z.
        • Tureci E.
        • Ozkara C.
        • Uysal O.
        • Buyra N.
        Association between interleukin-1 beta (IL-1beta) gene polymorphism and outcome after head injury: an early report.
        Acta Neurochir. 2005; 147 (discussion 720): 715-720
        • Vink R.
        • Gabrielian L.
        • Thornton E.
        The role of substance P in secondary pathophysiology after traumatic brain injury.
        Front. Neurol. 2017; 8https://doi.org/10.3389/fneur.2017.00304
        • Wallisch J.S.
        • Simon D.W.
        • Bayır H.
        • Bell M.J.
        • Kochanek P.M.
        • Clark R.S.B.
        Cerebrospinal fluid NLRP3 is increased after severe traumatic brain injury in infants and children.
        Neurocrit. Care. 2017; 27: 44-50https://doi.org/10.1007/s12028-017-0378-7
        • Walsh J.T.
        • Hendrix S.
        • Boato F.
        • Smirnov I.
        • Zheng J.
        • Lukens J.R.
        • Gadani S.
        • Hechler D.
        • Gölz G.
        • Rosenberger K.
        • Kammertöns T.
        • Vogt J.
        • Vogelaar C.
        • Siffrin V.
        • Radjavi A.
        • Fernandez-Castaneda A.
        • Gaultier A.
        • Gold R.
        • Kanneganti T.-D.
        • Nitsch R.
        • Zipp F.
        • Kipnis J.
        MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4.
        J. Clin. Invest. 2015; 125: 699-714https://doi.org/10.1172/JCI76210
        • Wang K.-Y.
        • Yu G.-F.
        • Zhang Z.-Y.
        • Huang Q.
        • Dong X.-Q.
        Plasma high-mobility group box 1 levels and prediction of outcome in patients with traumatic brain injury.
        Clin. Chim. Acta. 2012; 413: 1737-1741https://doi.org/10.1016/j.cca.2012.07.002
        • Wang G.
        • Zhang J.
        • Hu X.
        • Zhang L.
        • Mao L.
        • Jiang X.
        • Liou A.K.-F.
        • Leak R.K.
        • Gao Y.
        • Chen J.
        Microglia/macrophage polarization dynamics in white matter after traumatic brain injury.
        J. Cereb. Blood Flow Metab. 2013; 33: 1864-1874https://doi.org/10.1038/jcbfm.2013.146
        • Wang K.K.W.
        • Yang Z.
        • Yue J.K.
        • Zhang Z.
        • Winkler E.A.
        • Puccio A.M.
        • Diaz-Arrastia R.
        • Lingsma H.F.
        • Yuh E.L.
        • Mukherjee P.
        • Valadka A.B.
        • Gordon W.A.
        • Okonkwo D.O.
        • Manley G.T.
        • the TRACK-TBI Investigators
        • Cooper S.R.
        • Dams-O’Connor K.
        • Hricik A.J.
        • Inoue T.
        • Maas A.I.R.
        • Menon D.K.
        • Schnyer D.M.
        • Sinha T.K.
        • Vassar M.J.
        Plasma anti-glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury pilot study.
        J. Neurotrauma. 2016; 33: 1270-1277https://doi.org/10.1089/neu.2015.3881
        • Warrington A.E.
        • Bieber A.J.
        • Ciric B.
        • Van Keulen V.
        • Pease L.R.
        • Mitsunaga Y.
        • Soldan M.M.P.
        • Rodriguez M.
        Immunoglobulin-mediated CNS repair.
        J. Allergy Clin. Immunol. 2001; 108: S121-S125https://doi.org/10.1067/mai.2001.118301
        • Washington P.M.
        • Villapol S.
        • Burns M.P.
        Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy?.
        Exp. Neurol. 2016; 275: 381-388https://doi.org/10.1016/j.expneurol.2015.06.015
        • Waters R.J.
        • Murray G.D.
        • Teasdale G.M.
        • Stewart J.
        • Day I.
        • Lee R.J.
        • Nicoll J.A.R.
        Cytokine gene polymorphisms and outcome after traumatic brain injury.
        J. Neurotrauma. 2013; 30: 1710-1716https://doi.org/10.1089/neu.2012.2792
        • Weerth S.H.
        • Rus H.
        • Shin M.L.
        • Raine C.S.
        Complement C5 in experimental autoimmune encephalomyelitis (EAE) facilitates remyelination and prevents gliosis.
        Am. J. Pathol. 2003; 163: 1069-1080
        • Westland K.W.
        • Pollard J.D.
        • Sander S.
        • Bonner J.G.
        • Linington C.
        • McLeod J.G.
        Activated non-neural specific T cells open the blood-brain barrier to circulating antibodies.
        Brain J. Neurol. 1999; 122: 1283-1291
        • Whitnall L.
        Disability in young people and adults after head injury: 5–7 year follow up of a prospective cohort study.
        J. Neurol. Neurosurg. Psychiatry. 2006; 77: 640-645https://doi.org/10.1136/jnnp.2005.078246
        • Winter M.
        • Baksmeier C.
        • Steckel J.
        • Barman S.
        • Malviya M.
        • Harrer-Kuster M.
        • Hartung H.
        • Goebels N.
        Dose-dependent inhibition of demyelination and microglia activation by IVIG.
        Ann. Clin. Transl. Neurol. 2016; 3: 828-843https://doi.org/10.1002/acn3.326
        • Wong D.
        • Prameya R.
        • Dorovini-Zis K.
        In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1.
        J. Neuropathol. Exp. Neurol. 1999; 58: 138-152https://doi.org/10.1097/00005072-199902000-00004
        • Woodcock T.
        • Morganti-Kossmann M.C.
        The role of markers of inflammation in traumatic brain injury.
        Front. Neurol. 2013; 4https://doi.org/10.3389/fneur.2013.00018
        • Xu K.
        • Yang Z.
        • Shi R.
        • Luo C.
        • Zhang Z.
        Expression of aryl hydrocarbon receptor in rat brain lesions following traumatic brain injury.
        Diagn. Pathol. 2016; 11https://doi.org/10.1186/s13000-016-0522-2
        • Yoles E.
        • Hauben E.
        • Palgi O.
        • Agranov E.
        • Gothilf A.
        • Cohen A.
        • Kuchroo V.
        • Cohen I.R.
        • Weiner H.
        • Schwartz M.
        Protective autoimmunity is a physiological response to CNS trauma.
        J. Neurosci. 2001; 21: 3740-3748
        • Zanier E.R.
        • Fumagalli S.
        • Perego C.
        • Pischiutta F.
        • De Simoni M.-G.
        Shape descriptors of the “never resting” microglia in three different acute brain injury models in mice.
        Intensive Care Med. Exp. 2015; 3https://doi.org/10.1186/s40635-015-0039-0
        • Zanier E.R.
        • Marchesi F.
        • Ortolano F.
        • Perego C.
        • Arabian M.
        • Zoerle T.
        • Sammali E.
        • Pischiutta F.
        • De Simoni M.-G.
        Fractalkine receptor deficiency is associated with early protection but late worsening of outcome following brain trauma in mice.
        J. Neurotrauma. 2016; 33: 1060-1072https://doi.org/10.1089/neu.2015.4041
        • Zhang Z.
        • Zoltewicz J.S.
        • Mondello S.
        • Newsom K.J.
        • Yang Z.
        • Yang B.
        • Kobeissy F.
        • Guingab J.
        • Glushakova O.
        • Robicsek S.
        • Heaton S.
        • Buki A.
        • Hannay J.
        • Gold M.S.
        • Rubenstein R.
        • Lu X.M.
        • Dave J.R.
        • Schmid K.
        • Tortella F.
        • Robertson C.S.
        • Wang K.K.W.
        Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products.
        PLoS One. 2014; 9e92698https://doi.org/10.1371/journal.pone.0092698