Advertisement

HSV1 latent transcription and non-coding RNA: A critical retrospective

      Highlights

      • The history of research into latent transcription of HSV1 is provided.
      • Known genetic elements relevant to latent transcription are mapped and annotated.
      • Recombinant HSV1 strains are detailed, and their phenotypes are described.
      • The phenotypes associated with HSV1 ncRNAs are reviewed.

      Abstract

      Virologists have invested great effort into understanding how the herpes simplex viruses and their relatives are maintained dormant over the lifespan of their host while maintaining the poise to remobilize on sporadic occasions. Piece by piece, our field has defined the tissues in play (the sensory ganglia), the transcriptional units (the latency-associated transcripts), and the responsive genomic region (the long repeats of the viral genomes). With time, the observed complexity of these features has compounded, and the totality of viral factors regulating latency are less obvious. In this review, we compose a comprehensive picture of the viral genetic elements suspected to be relevant to herpes simplex virus 1 (HSV1) latent transcription by conducting a critical analysis of about three decades of research. We describe these studies, which largely involved mutational analysis of the notable latency-associated transcripts (LATs), and more recently a series of viral miRNAs. We also intend to draw attention to the many other less characterized non-coding RNAs, and perhaps coding RNAs, that may be important for consideration when trying to disentangle the multitude of phenotypes of the many genetic modifications introduced into recombinant HSV1 strains.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abghari S.
        • Stulting R.
        Recovery of herpes simplex virus from ocular tissues of latently infected inbred mice.
        Invest. Ophthalmol. Vis. Sci. 1988; 29: 239-243
        • Abghari S.
        • Stulting R.
        • Petrash J.
        Detection of herpes simplex virus type 1 icpo antisense transcript in latently infected cornea cells of inbred mice.
        Invest. Ophthalmol. Vis. Sci. 1989; 30: 214
        • Ace C.
        • McKee T.
        • Ryan J.
        • Cameron J.
        • Preston C.
        Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression.
        J. Virol. 1989; 63: 2260-2269
        • Ackland-Berglund C.E.
        • Davido D.J.
        • Leib D.A.
        The roles of the camp-response element and tata box in expression of the herpes simplex virus type 1 latency-associated transcripts.
        Virology. 1995; 210: 141-151
        • Ahmed M.
        • Fraser N.W.
        Herpes simplex virus type 1 2-kilobase latency-associated transcript intron associates with ribosomal proteins and splicing factors.
        J. Virol. 2001; 75: 12070-12080
        • Allen S.J.
        • Hamrah P.
        • Gate D.
        • Mott K.R.
        • Mantopoulos D.
        • Zheng L.
        • Town T.
        • Jones C.
        • von Andrian U.H.
        • Freeman G.J.
        • et al.
        The role of LAT in increased CD8+ t cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1.
        J. Virol. 2011; 85: 4184-4197
        • Allen S.J.
        • Rhode-Kurnow A.
        • Mott K.R.
        • Jiang X.
        • Carpenter D.
        • Rodriguez-Barbosa J.I.
        • Jones C.
        • Wechsler S.L.
        • Ware C.F.
        • Ghiasi H.
        Interactions between herpesvirus entry mediator (tnfrsf14) and latency-associated transcript during herpes simplex virus 1 latency.
        J. Virol. 2014; 88: 1961-1971
        • Alvira M.R.
        • Goins W.F.
        • Cohen J.B.
        • Glorioso J.C.
        Genetic studies exposing the splicing events involved in herpes simplex virus type 1 latency-associated transcript production during lytic and latent infection.
        J. Virol. 1999; 73: 3866-3876
        • Amelio A.L.
        • Giordani N.V.
        • Kubat N.J.
        • O’Neil J.E.
        • Bloom D.C.
        Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant.
        J. Virol. 2006; 80: 2063-2068
        • Amelio A.L.
        • McAnany P.K.
        • Bloom D.C.
        A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities.
        J. Virol. 2006; 80: 2358-2368
        • Arthur J.
        • Efstathiou S.
        • Simmons A.
        Intranuclear foci containing low abundance herpes simplex virus latency-associated transcripts visualized by non-isotopic in situ hybridization.
        J. Gen. Virol. 1993; 74: 1363-1370
        • Arthur J.L.
        • Everett R.
        • Brierley I.
        • Efstathiou S.
        Disruption of the 5 and 3 splice sites flanking the major latency-associated transcripts of herpes simplex virus type 1: evidence for alternate splicing in lytic and latent infections.
        J. Gen. Virol. 1998; 79: 107-116
        • Arthur J.L.
        • Scarpini C.G.
        • Connor V.
        • Lachmann R.H.
        • Tolkovsky A.M.
        • Efstathiou S.
        Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro.
        J. Virol. 2001; 75: 3885-3895
        • Atanasiu D.
        • Fraser N.W.
        The stable 2-kilobase latency-associated transcript of herpes simplex virus type 1 can alter the assembly of the 60s ribosomal subunit and is exported from nucleus to cytoplasm by a CRM1-dependent pathway.
        J. Virol. 2007; 81: 7695-7701
        • Atanasiu D.
        • Kent J.R.
        • Gartner J.J.
        • Fraser N.W.
        The stable 2-kb LAT intron of herpes simplex stimulates the expression of heat shock proteins and protects cells from stress.
        Virology. 2006; 350: 26-33
        • Baringer J.
        • Swoveland P.
        Persistent herpes simplex virus infection in rabbit trigeminal ganglia.
        Lab. Invest. A Journal of Technical Methods and Pathology. 1974; 30: 230-240
        • Baringer J.R.
        Recovery of herpes simplex virus from human sacral ganglions.
        N. Engl. J. Med. 1974; 291: 828-830
        • Baringer J.R.
        • Swoveland P.
        Recovery of herpes-simplex virus from human trigeminal ganglions.
        N. Engl. J. Med. 1973; 288: 648-650
        • Bastian F.
        • Rabson A.
        • Yee C.
        • Tralka T.
        Herpesvirus hominis: isolation from human trigeminal ganglion.
        Science. 1972; 178: 306-307
        • Batchelor A.H.
        • O’Hare P.
        Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1.
        J. Virol. 1990; 64: 3269-3279
        • Batchelor A.H.
        • O’Hare P.
        Localization of cis-acting sequence requirements in the promoter of the latency-associated transcript of herpes simplex virus type 1 required for cell-type-specific activity.
        J. Virol. 1992; 66: 3573-3582
        • Batchelor A.H.
        • Wilcox K.W.
        • O’Hare P.
        Binding and repression of the latency-associated promoter of herpes simplex virus by the immediate early 175k protein.
        J. Gen. Virol. 1994; 75: 753-767
        • Ben-Hur T.
        • Moyal M.
        • Rösen-Wolff A.
        • Darai G.
        • Becker Y.
        Characterization of RNA transcripts from herpes simplex virus-1 DNA fragment BamHI-B.
        Virology. 1989; 169: 1-8
        • BenMohamed L.
        • Osorio N.
        • Srivastava R.
        • Khan A.A.
        • Simpson J.L.
        • Wechsler S.L.
        Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) mutant using the in vivo mouse uv-b model of induced reactivation.
        J. Neurovirol. 2015; : 1-10
        • Bertholet C.
        • Van Meir E.
        • ten Heggeler-Bordier B.
        • Wittek R.
        Vaccinia virus produces late mrnas by discontinuous synthesis.
        Cell. 1987; 50: 153-162
        • Berthomme H.
        • Lokensgard J.
        • Yang L.
        • Margolis T.
        • Feldman L.T.
        Evidence for a bidirectional element located downstream from the herpes simplex virus type 1 latency-associated promoter that increases its activity during latency.
        J. Virol. 2000; 74: 3613-3622
        • Berthomme H.
        • Thomas J.
        • Texier P.
        • Epstein A.
        • Feldman L.T.
        Enhancer and long-term expression functions of herpes simplex virus type 1 latency-associated promoter are both located in the same region.
        J. Virol. 2001; 75: 4386-4393
        • Bertke A.S.
        • Apakupakul K.
        • Ma A.
        • Imai Y.
        • Gussow A.M.
        • Wang K.
        • Cohen J.I.
        • Bloom D.C.
        • Margolis T.P.
        Lat region factors mediating differential neuronal tropism of HSV-1 and HSV-2 do not act in trans.
        PloS one. 2012; 7: e53281
        • Bertke A.S.
        • Ma A.
        • Margolis M.S.
        • Margolis T.P.
        Different mechanisms regulate productive herpes simplex virus 1 (HSV-1) and HSV-2 infections in adult trigeminal neurons.
        J. Virol. 2013; 87: 6512-6516
        • Bertke A.S.
        • Patel A.
        • Imai Y.
        • Apakupakul K.
        • Margolis T.P.
        • Krause P.R.
        Latency-associated transcript (LAT) exon 1 controls herpes simplex virus species-specific phenotypes: reactivation in the guinea pig genital model and neuron subtype-specific latent expression of LAT.
        J. Virol. 2009; 83: 10007-10015
        • Bertke A.S.
        • Patel A.
        • Krause P.R.
        Herpes simplex virus latency-associated transcript sequence downstream of the promoter influences type-specific reactivation and viral neurotropism.
        J. Virol. 2007; 81: 6605-6613
        • Bertke A.S.
        • Swanson S.M.
        • Chen J.
        • Imai Y.
        • Kinchington P.R.
        • Margolis T.P.
        A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro.
        J. Virol. 2011; 85: 6669-6677
        • Bhattacharjee P.S.
        • Tran R.K.
        • Myles M.E.
        • Maruyama K.
        • Mallakin A.
        • Bloom D.C.
        • Hill J.M.
        Overlapping subdeletions within a 348-bp in the 5 exon of the LAT region that facilitates epinephrine-induced reactivation of HSV-1 in the rabbit ocular model do not further define a functional element.
        Virology. 2003; 312: 151-158
        • Bhela S.
        • Mulik S.
        • Gimenez F.
        • Reddy P.B.
        • Richardson R.L.
        • Varanasi S.K.
        • Jaggi U.
        • Xu J.
        • Lu P.Y.
        • Rouse B.T.
        Role of miR-155 in the pathogenesis of herpetic stromal keratitis.
        Am. J. Pathol. 2015; 185 (Apr): 1073-1084
        • Biney E.E.
        • Orrett F.A.
        Screening of human corneas for herpes simplex virus by tissue culture and polymerase chain reaction.
        Jpn. J. Med. Sci. Biol. 1997; 50: 151-160
        • Block T.M.
        • Deshmane S.
        • Masonis J.
        • Maggioncalda J.
        • Valyi-Nagi T.
        • Fraser N.W.
        An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers.
        Virology. 1993; 192: 618-630
        • Block T.M.
        • Spivack J.
        • Steiner I.
        • Deshmane S.
        • McIntosh M.
        • Lirette R.
        • Fraser N.
        A herpes simplex virus type 1 latency-associated transcript mutant reactivates with normal kinetics from latent infection.
        J. Virol. 1990; 64: 3417-3426
        • Bloom D.
        • Devi-Rao G.
        • Hill J.
        • Stevens J.G.
        • Wagner E.
        Molecular analysis of herpes simplex virus type 1 during epinephrine-induced reactivation of latently infected rabbits in vivo.
        J. Virol. 1994; 68: 1283-1292
        • Bloom D.C.
        Alphaherpesvirus latency: a dynamic state of transcription and reactivation.
        Adv. Virus Res. 2016; 94: 53-80
        • Bloom D.C.
        • Hill J.M.
        • Devi-Rao G.
        • Wagner E.K.
        • Feldman L.T.
        • Stevens J.G.
        A 348-base-pair region in the latency-associated transcript facilitates herpes simplex virus type 1 reactivation.
        J. Virol. 1996; 70: 2449-2459
        • Bloom D.C.
        • Stevens J.G.
        • Hill J.M.
        • Tran R.K.
        Mutagenesis of a camp response element within the latency-associated transcript promoter of HSV-1 reduces adrenergic reactivation.
        Virology. 1997; 236: 202-207
        • Bohenzky R.
        • Papavassiliou A.G.
        • Gelman I.H.
        • Silverstein S.
        Identification of a promoter mapping within the reiterated sequences that flank the herpes simplex virus type 1 UL region.
        Journal of virology. 1993; 67: 632-642
        • Bohenzky R.A.
        • Lagunoff M.
        • Roizman B.
        • Wagner E.K.
        • Silverstein S.
        Two overlapping transcription units which extend across the LS junction of herpes simplex virus type 1.
        J. Virol. 1995; 69: 2889-2897
        • Bosnjak L.
        • Miranda-Saksena M.
        • Koelle D.M.
        • Boadle R.A.
        • Jones C.A.
        • Cunningham A.L.
        Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells.
        J. Immunol. 2005; 174: 2220-2227
        • Branco F.J.
        • Fraser N.W.
        Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis.
        J. Virol. 2005; 79: 9019-9025
        • Brinkman K.K.
        • Mishra P.
        • Fraser N.W.
        The half-life of the HSV-1 1.5-kb LAT intron is similar to the half-life of the 2.0-kb LAT intron.
        J. Neurovirol. 2013; 19: 102-108
        • Bruni R.
        • Roizman B.
        Open reading frame p-a herpes simplex virus gene repressed during productive infection encodes a protein that binds a splicing factor and reduces synthesis of viral proteins made from spliced mRNA.
        Proc. Natl. Acad. Sci. 1996; 93: 10423-10427
        • Bryant H.
        • Wadd S.
        • Lamond A.
        • Silverstein S.
        • Clements J.
        Herpes simplex virus ie63 (ICP27) protein interacts with spliceosome-associated protein 145 and inhibits splicing prior to the first catalytic step.
        J. Virol. 2001; 75: 4376-4385
        • Burke R.L.
        • Hartog K.
        • Croen K.D.
        • Ostrove J.M.
        Detection and characterization of latent HSV RNA by in situ and northern blot hybridization in guinea pigs.
        Virology. 1991; 181: 793-797
        • Burton E.A.
        • Hong C.-S.
        • Glorioso J.C.
        The stable 2.0-kilobase intron of the herpes simplex virus type 1 latency-associated transcript does not function as an antisense repressor of ICP0 in nonneuronal cells.
        J. Virol. 2003; 77: 3516-3530
        • Calin G.A.
        • Croce C.M.
        MicroRNA signatures in human cancers.
        Nat. Rev. Cancer. 2006; 6: 857-866
        • Cantin E.M.
        • Chen J.
        • McNeill J.
        • Willey D.E.
        • Openshaw H.
        Detection of herpes simplex virus DNA sequences in corneal transplant recipients by polymerase chain reaction assays.
        Curr. Eye Res. 1991; 10: 15-21
        • Carpenter D.
        • Henderson G.
        • Hsiang C.
        • Osorio N.
        • BenMohamed L.
        • Jones C.
        • Wechsler S.L.
        Introducing point mutations into the ATGS of the putative open reading frames of the HSV-1 gene encoding the latency associated transcript (LAT) reduces its anti-apoptosis activity.
        Microb. Pathog. 2008; 44: 98-102
        • Carpenter D.
        • Hsiang C.
        • Brown D.J.
        • Jin L.
        • Osorio N.
        • BenMohamed L.
        • Jones C.
        • Wechsler S.L.
        Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis.
        Virology. 2007; 369: 12-18
        • Carpenter D.
        • Singh S.
        • Osorio N.
        • Hsiang C.
        • Jiang X.
        • Jin L.
        • Jones C.
        • Wechsler S.L.
        A speculated ribozyme site in the herpes simplex virus type 1 latency-associated transcript gene is not essential for a wild-type reactivation phenotype.
        J. Neurovirol. 2008; 14: 558-562
        • Carter K.L.
        • Roizman B.
        Alternatively spliced mRNAs predicted to yield frame-shift proteins and stable intron 1 RNAs of the herpes simplex virus 1 regulatory gene alpha 0 accumulate in the cytoplasm of infected cells.
        Proc. Natl. Acad. Sci. 1996; 93: 12535-12540
        • Catez F.
        • Picard C.
        • Held K.
        • Gross S.
        • Rousseau A.
        • Theil D.
        • Sawtell N.
        • Labetoulle M.
        • Lomonte P.
        HSV-1 genome subnuclear positioning and associations with host-cell PML-NBS and centromeres regulate LAT locus transcription during latency in neurons.
        PLoS Pathog. 2012; 8: e1002852
        • Chan D.
        • Cohen J.
        • Naito J.
        • Mott K.R.
        • Osorio N.
        • Jin L.
        • Fraser N.W.
        • Jones C.
        • Wechsler S.L.
        • Perng G.C.
        A mutant deleted for most of the herpes simplex virus type 1 (HSV-1) UOL gene does not affect the spontaneous reactivation phenotype in rabbits.
        J. Neurovirol. 2006; 12: 5-16
        • Chen S.-H.
        • Kramer M.F.
        • Schaffer P.A.
        • Coen D.M.
        A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus.
        J. Virol. 1997; 71: 5878-5884
        • Chen S.-H.
        • Lee L.Y.
        • Garber D.A.
        • Schaffer P.A.
        • Knipe D.M.
        • Coen D.M.
        Neither LAT nor open reading frame p mutations increase expression of spliced or intron-containing ICP0 transcripts in mouse ganglia latently infected with herpes simplex virus.
        J. Virol. 2002; 76: 4764-4772
        • Chen X.
        • Schmidt M.C.
        • Goins W.F.
        • Glorioso J.C.
        Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections.
        J. Virol. 1995; 69: 7899-7908
        • Chentoufi A.A.
        • Kritzer E.
        • Tran M.V.
        • Dasgupta G.
        • Lim C.H.
        • David C.Y.
        • Afifi R.E.
        • Jiang X.
        • Carpenter D.
        • Osorio N.
        • et al.
        The herpes simplex virus 1 latency-associated transcript promotes functional exhaustion of virus-specific CD8+ t cells in latently infected trigeminal ganglia: a novel immune evasion mechanism.
        J. Virol. 2011; 85: 9127-9138
        • Chou J.
        • Roizman B.
        The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the l component.
        J. Virol. 1986; 57: 629-637
        • Cleator G.
        • Klapper P.
        • Dennett C.
        • Sullivan A.
        • Bonshek R.
        • Marcyniuk B.
        • Tullo A.
        Corneal donor infection by herpes simplex virus: herpes simplex virus DNA in donor corneas.
        Cornea. 1994; 13: 294-304
        • Clement C.
        • Bhattacharjee P.S.
        • Kaufman H.E.
        • Hill J.M.
        Heat-induced reactivation of HSV-1 in latent mice: upregulation in the TG of CD83 and other immune response genes and their LAT-ICP0 locus.
        Invest. Ophthalmol. Vis. Sci. 2009; 50 (Jun): 2855-2861
        • Clement C.
        • Bhattacharjee P.S.
        • Kumar M.
        • Foster T.P.
        • Thompson H.W.
        • Hill J.M.
        Upregulation of mouse genes in HSV-1 latent TG after butyrate treatment implicates the multiple roles of the LAT-ICP0 locus.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 1770-1779
        • Cliffe A.R.
        • Coen D.M.
        • Knipe D.M.
        Kinetics of facultative heterochromatin and polycomb group protein association with the herpes simplex viral genome during establishment of latent infection.
        MBio. 2013; 4: e00590-12
        • Cliffe A.R.
        • Garber D.A.
        • Knipe D.M.
        Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters.
        J. Virol. 2009; 83: 8182-8190
        • Coffin R.
        • Thomas S.
        • Thomas D.
        • Latchman D.
        The herpes simplex virus 2 kb latency associated transcript (LAT) leader sequence allows efficient expression of downstream proteins which is enhanced in neuronal cells: possible function of LAT ORFs.
        J. Gen. Virol. 1998; 79: 3019-3026
        • Colgin M.A.
        • Smith R.L.
        • Wilcox C.L.
        Inducible cyclic amp early repressor produces reactivation of latent herpes simplex virus type 1 in neurons in vitro.
        J. Virol. 2001; 75: 2912-2920
        • Cook M.
        • Bastone V.
        • Stevens J.
        Evidence that neurons harbor latent herpes simplex virus.
        Infect. Immun. 1974; 9: 946-951
        • Cook S.
        • Batra S.
        • Brown S.
        Recovery of herpes simplex virus from the corneas of experimentally infected rabbits.
        J. Gen. Virol. 1987; 68: 2013-2017
        • Cook S.
        • Brown S.M.
        Herpes simplex virus type 1 latency in rabbit corneal cells in vitro: reactivation and recombination following intratypic superinfection of long term cultures.
        J. Gen. Virol. 1987; 68: 813-824
        • Cook S.
        • Hill J.
        • Lynas C.
        • Maitland N.
        Latency-associated transcripts in corneas and ganglia of HSV-1 infected rabbits.
        Br. J. Ophthalmol. 1991; 75: 644-648
        • Cook S.
        • Paveloff M.
        • Doucet J.
        • Cottingham A.
        • Sedarati F.
        • Hill J.
        Ocular herpes simplex virus reactivation in mice latently infected with latency-associated transcript mutants.
        Invest. Ophthalmol. Vis. Sci. 1991; 32: 1558-1561
        • Cook S.D.
        • Ophth F.
        • Hill J.H.
        Herpes simplex virus: molecular biology and the possibility of corneal latency.
        Surv. Ophthalmol. 1991; 36: 140-148
        • Coupes D.
        • Klapper P.
        • Cleator G.
        • Bailey A.
        • Tullo A.
        Herpesvirus simplex in chronic human stromal keratitis.
        Curr. Eye Res. 1986; 5: 735-738
        • Creech C.C.
        • Neumann D.M.
        Changes to euchromatin on LAT and ICP4 following reactivation are more prevalent in an efficiently reactivating strain of HSV-1.
        PloS one. 2010; 5: e15416
        • Croen K.D.
        • Ostrove J.M.
        • Dragovic L.J.
        • Smialek J.E.
        • Straus S.E.
        Latent herpes simplex virus in human trigeminal ganglia.
        N. Engl. J. Med. 1987; 317: 1427-1432
        • Cui C.
        • Griffiths A.
        • Li G.
        • Silva L.M.
        • Kramer M.F.
        • Gaasterland T.
        • Wang X.-J.
        • Coen D.M.
        Prediction and identification of herpes simplex virus 1-encoded microRNAs.
        J. Virol. 2006; 80: 5499-5508
        • Cunha C.W.
        • Taylor K.E.
        • Pritchard S.M.
        • Delboy M.G.
        • Komala Sari T.
        • Aguilar H.C.
        • Mossman K.L.
        • Nicola A.V.
        Widely used herpes simplex virus 1 ICP0 deletion mutant strain dl1403 and its derivative viruses do not express glycoprotein C due to a secondary mutation in the GC gene.
        PLoS ONE. 2015; 10: e0131129
        • da Silva L.F.
        • Jones C.
        Small non-coding RNAs encoded within the herpes simplex virus type 1 latency associated transcript (LAT) cooperate with the retinoic acid inducible gene I (RIG-I) to induce beta-interferon promoter activity and promote cell survival.
        Virus Res. 2013; 175: 101-109
        • Danaher R.J.
        • Jacob R.J.
        • Steiner M.R.
        • Allen W.R.
        • Hill J.M.
        • Miller C.S.
        Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript-independent manner in neuronal cells.
        J. Neurovirol. 2005; 11: 306-317
        • Davido D.J.
        • Leib D.A.
        Role of cis-acting sequences of the ICP0 promoter of herpes simplex virus type 1 in viral pathogenesis, latency and reactivation.
        J. Gen. Virol. 1996; 77: 1853-1863
        • Deatly A.M.
        • Spivack J.
        • Lavi E.
        • O’Boyle D.
        • Fraser N.
        Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome.
        J. Virol. 1988; 62: 749-756
        • Deatly A.M.
        • Spivack J.G.
        • Lavi E.
        • Fraser N.W.
        RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice.
        Proc. Natl. Acad. Sci. 1987; 84: 3204-3208
        • Deshmane S.L.
        • Nicosia M.
        • Valyi-Nagy T.
        • Feldman L.T.
        • Dillner A.
        • Fraser N.W.
        An HSV-1 mutant lacking the LAT tata element reactivates normally in explant cocultivation.
        Virology. 1993; 196: 868-872
        • Devi-Rao G.
        • Aguilar J.
        • Rice M.
        • Garza H.
        • Bloom D.
        • Hill J.
        • Wagner E.
        Herpes simplex virus genome replication and transcription during induced reactivation in the rabbit eye.
        J. Virol. 1997; 71: 7039-7047
        • Devi-Rao G.
        • Bloom D.
        • Stevens J.
        • Wagner E.
        Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia.
        J. Virol. 1994; 68: 1271-1282
        • Devi-Rao G.
        • Goodart S.
        • Hecht L.
        • Rochford R.
        • Rice M.
        • Wagner E.
        Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency-associated transcripts.
        J. Virol. 1991; 65: 2179-2190
        • Dobson A.
        • Sederati F.
        • Devi-Rao G.
        • Flanagan W.
        • Farrell M.
        • Stevens J.
        • Wagner E.
        • Feldman L.
        Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus.
        J. Virol. 1989; 63: 3844-3851
        • Dobson A.T.
        • Margolis T.P.
        • Gomes W.A.
        • Feldman L.T.
        In vivo deletion analysis of the herpes simplex virus type 1 latency-associated transcript promoter.
        J. Virol. 1995; 69: 2264-2270
        • Dobson A.T.
        • Margolis T.P.
        • Sedarati F.
        • Stevens J.G.
        • Feldman L.T.
        A latent, nonpathogenic HSV-1-derived vector stably expresses beta-galactosidase in mouse neurons.
        Neuron. 1990; 5 (Sep): 353-360
        • Doerig C.
        • Pizer L.I.
        • Wilcox C.L.
        An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1.
        J. Virol. 1991; 65: 2724-2727
        • Doerig C.
        • Pizer L.I.
        • Wilcox C.L.
        Detection of the latency-associated transcript in neuronal cultures during the latent infection with herpes simplex virus type 1.
        Virology. 1991; 183: 423-426
        • Dolan A.
        • Jamieson F.E.
        • Cunningham C.
        • Barnett B.C.
        • McGeoch D.J.
        The genome sequence of herpes simplex virus type 2.
        J. Virol. 1998; 72: 2010-2021
        • Douville P.
        • Hagmann M.
        • Georgiev O.
        • Schaffner W.
        Positive and negative regulation at the herpes simplex virus ICP4 and ICP0 TAATGARAT motifs.
        Virology. 1995; 207: 107-116
        • Drolet B.
        • Perng G.
        • Cohen J.
        • Slanina S.
        • Yukht A.
        • Nesburn A.
        • Wechsler S.
        The region of the herpes simplex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein.
        Virology. 1998; 242: 221-232
        • Drolet B.
        • Perng G.
        • Villosis R.
        • Slanina S.
        • Nesburn A.
        • Wechsler S.
        Expression of the first 811 nucleotides of the herpes simplex virus type 1 latency-associated transcript (LAT) partially restores wild-type spontaneous reactivation to a LAT-null mutant.
        Virology. 1999; 253: 96-106
        • Du T.
        • Han Z.
        • Zhou G.
        • Roizman B.
        Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation.
        Proc. Natl. Acad. Sci. 2015; 112: E49-E55
        • Du T.
        • Zhou G.
        • Roizman B.
        Hsv-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcript and miRNAs.
        Proc. Natl. Acad. Sci. 2011; 108: 18820-18824
        • Du T.
        • Zhou G.
        • Roizman B.
        Induction of apoptosis accelerates reactivation of latent HSV-1 in ganglionic organ cultures and replication in cell cultures.
        Proc. Natl. Acad. Sci. 2012; 109: 14616-14621
        • Du T.
        • Zhou G.
        • Roizman B.
        Modulation of reactivation of latent herpes simplex virus 1 in ganglionic organ cultures by P300/CBP and STAT3.
        Proc. Natl. Acad. Sci. 2013; 110: E2621-E2628
        • Duan F.
        • Liao J.
        • Huang Q.
        • Nie Y.
        • Wu K.
        HSV-1 miR-H6 inhibits HSV-1 replication and IL-6 expression in human corneal epithelial cells in vitro.
        Clin. Dev. Immunol. 2012; 2012: 192791
        • Dynan W.S.
        Promoters for housekeeping genes.
        Trends Genet. 1986; 2: 196-197
        • Easty D.
        • Shimeld C.
        • Claoue C.
        • Menage M.
        Herpes simplex virus isolation in chronic stromal keratitis: human and laboratory studies.
        Cur. Eye Res. 1987; 6: 69-74
        • Ecob-Prince M.
        • Preston C.
        • Rixon F.
        • Hassan K.
        • Kennedy P.
        Neurons containing latency-associated transcripts are numerous and widespread in dorsal root ganglia following footpad inoculation of mice with herpes simplex virus type 1 mutant in1814.
        J. Gen. Virol. 1993; 74: 985-994
        • Ecob-Prince M.
        • Rixon F.
        • Preston C.
        • Hassan K.
        • Kennedy P.
        Reactivation in vivo and in vitro of herpes simplex virus from mouse dorsal root ganglia which contain different levels of latency-associated transcripts.
        J. Gen. Virol. 1993; 74: 995-1002
        • Ellison K.S.
        • Rice S.A.
        • Verity R.
        • Smiley J.R.
        Processing of α-globin and ICP0 mRNA in cells infected with herpes simplex virus type 1 ICP27 mutants.
        J. Virol. 2000; 74: 7307-7319
        • Enk J.
        • Levi A.
        • Weisblum Y.
        • Yamin R.
        • Charpak-Amikam Y.
        • Wolf D.G.
        • Mandelboim O.
        HSV1 microRNA modulation of GPI anchoring and downstream immune evasion.
        Cell Rep. 2016; 17: 949-956
        • Everett R.D.
        • Cross A.
        • Orr A.
        A truncated form of herpes simplex virus type 1 immediate-early protein VMW110 is expressed in a cell type dependent manner.
        Virology. 1993; 197: 751-756
        • Fareed M.U.
        • Spivack J.G.
        Two open reading frames (ORF1 and ORF2) within the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1 are not essential for reactivation from latency.
        J. Virol. 1994; 68: 8071-8081
        • Farrell M.
        • Hill J.
        • Margolis T.
        • Stevens J.
        • Wagner E.
        • Feldman L.
        The herpes simplex virus type 1 reactivation function lies outside the latency-associated transcript open reading frame orf-2.
        J. Virol. 1993; 67: 3653-3655
        • Farrell M.J.
        • Dobson A.T.
        • Feldman L.T.
        Herpes simplex virus latency-associated transcript is a stable intron.
        Proc. Natl. Acad. Sci. 1991; 88: 790-794
        • Farrell M.J.
        • Margolis T.P.
        • Gomes W.A.
        • Feldman L.T.
        Effect of the transcription start region of the herpes simplex virus type 1 latency-associated transcript promoter on expression of productively infected neurons in vivo.
        J. Virol. 1994; 68: 5337-5343
        • Feldman L.T.
        • Ellison A.R.
        • Voytek C.C.
        • Yang L.
        • Krause P.
        • Margolis T.P.
        Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice.
        Proc. Natl. Acad. Sci. 2002; 99: 978-983
        • Flanagan W.
        • Papavassiliou A.
        • Rice M.
        • Hecht L.
        • Silverstein S.
        • Wagner E.
        Analysis of the herpes simplex virus type 1 promoter controlling the expression of UL38, a true late gene involved in capsid assembly.
        J. Virol. 1991; 65: 769-786
        • Flores O.
        • Nakayama S.
        • Whisnant A.W.
        • Javanbakht H.
        • Cullen B.R.
        • Bloom D.C.
        Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mrna targets and reveals phenotypic effects in culture.
        J. Virol. 2013; 87: 6589-6603
        • Flowerdew S.E.
        • Wick D.
        • Himmelein S.
        • Horn A.K.
        • Sinicina I.
        • Strupp M.
        • Brandt T.
        • Theil D.
        • Hüfner K.
        Characterization of neuronal populations in the human trigeminal ganglion and their association with latent herpes simplex virus-1 infection.
        PloS one. 2013; 8: e83603
        • Frazier D.P.
        • Cox D.
        • Godshalk E.M.
        • Schaffer P.A.
        The herpes simplex virus type 1 latency-associated transcript promoter is activated through RAS and RAF by nerve growth factor and sodium butyrate in pc12 cells.
        J. Virol. 1996; 70: 7424-7432
        • Frazier D.P.
        • Cox D.
        • Godshalk E.M.
        • Schaffer P.A.
        Identification of cis-acting sequences in the promoter of the herpes simplex virus type 1 latency-associated transcripts required for activation by nerve growth factor and sodium butyrate in pc12 cells.
        J. Virol. 1996; 70: 7433-7444
        • Galloway D.A.
        • Fenoglio C.
        • McDougall J.
        Limited transcription of the herpes simplex virus genome when latent in human sensory ganglia.
        J. Virol. 1982; 41: 686-691
        • Galloway D.A.
        • Fenoglio C.
        • Shevchuk M.
        • McDougall J.K.
        Detection of herpes simplex RNA in human sensory ganglia.
        Virology. 1979; 95: 265-268
        • Garber D.A.
        • Schaffer P.A.
        • Knipe D.M.
        A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1.
        J. Virol. 1997; 71: 5885-5893
        • Gelman I.H.
        • Silverstein S.
        Co-ordinate regulation of herpes simplex virus gene expression is mediated by the functional interaction of two immediate early gene products.
        J. Mol. Biol. 1986; 191: 395-409
        • Gesser R.M.
        • Koo S.C.
        Latent herpes simplex virus type 1 gene expression in ganglia innervating the human gastrointestinal tract.
        J. Virol. 1997; 71: 4103-4106
        • Giordani N.V.
        • Neumann D.M.
        • Kwiatkowski D.L.
        • Bhattacharjee P.S.
        • McAnany P.K.
        • Hill J.M.
        • Bloom D.C.
        During herpes simplex virus type 1 infection of rabbits, the ability to express the latency-associated transcript increases latent-phase transcription of lytic genes.
        J. Virol. 2008; 82: 6056-6060
        • Goins W.
        • Sternberg L.
        • Croen K.
        • Krause P.
        • Hendricks R.
        • Fink D.
        • Straus S.
        • Levine M.
        • Glorioso J.
        A novel latency-active promoter is contained within the herpes simplex virus type 1 ul flanking repeats.
        J. Virol. 1994; 68: 2239-2252
        • Goldenberg D.
        • Mador N.
        • Ball M.J.
        • Panet A.
        • Steiner I.
        The abundant latency-associated transcripts of herpes simplex virus type 1 are bound to polyribosomes in cultured neuronal cells and during latent infection in mouse trigeminal ganglia.
        J. Virol. 1997; 71: 2897-2904
        • Goldenberg D.
        • Mador N.
        • Panet A.
        • Steiner I.
        Tissue specific distribution of the herpes simplex virus type 1 latency-associated transcripts on polyribosomes during latent infection: short communication.
        J. Neurovirol. 1998; 4: 426-432
        • Goodpasture E.W.
        Herpetic infection, with especial reference to involvement of the nervous system.
        Medicine. 1929; 8: 223
        • Gordon Y.
        • Johnson B.
        • Romanowski E.
        • Araullo-Cruz T.
        RNA complementary to herpes simplex virus type 1 ICP0 gene demonstrated in neurons of human trigeminal ganglia.
        J. Virol. 1988; 62: 1832-1835
        • Gordon Y.
        • Romanowski E.
        • Araullo-Cruz T.
        • McKnight J.
        HSV-1 corneal latency.
        Invest. Ophthalmol. Vis. Sci. 1991; 32: 663-665
        • Gordon Y.J.
        • Romanowski E.G.
        • Araullo-Cruz T.
        • Kinchington P.R.
        The proportion of trigeminal ganglionic neurons expressing herpes simplex virus type 1 latency-associated transcripts correlates to reactivation in the New Zealand rabbit ocular model.
        Graefes Arch. Clin. Exp. Ophthalmol. 1995; 233: 649-654
        • Green M.
        • Courtney R.
        • Dunkel E.
        Detection of an immediate early herpes simplex virus type 1 polypeptide in trigeminal ganglia from latently infected animals.
        Infect. Immun. 1981; 34: 987-992
        • Griffiths-Jones S.
        • Grocock R.J.
        • Van Dongen S.
        • Bateman A.
        • Enright A.J.
        miRbase: microRNA sequences, targets and gene nomenclature.
        Nucleic acids research. 2006; 34: D140-D144
        • Gupta A.
        • Gartner J.
        • Sethupathy P.
        • Hatzigeorgiou A.
        • Fraser N.
        Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript.
        Nature. 2006; 442: 82-85
        • Gupta A.
        • Gartner J.
        • Sethupathy P.
        • Hatzigeorgiou A.
        • Fraser N.
        Retraction: anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript.
        Nature. 2008; 451 (January): 600
        • Gussow A.M.
        • Giordani N.V.
        • Tran R.K.
        • Imai Y.
        • Kwiatkowski D.L.
        • Rall G.F.
        • Margolis T.P.
        • Bloom D.C.
        Tissue-specific splicing of the herpes simplex virus type 1 latency-associated transcript (LAT) intron in LAT transgenic mice.
        J. Virol. 2006; 80: 9414-9423
        • Hamza M.A.
        • Higgins D.M.
        • Feldman L.T.
        • Ruyechan W.T.
        The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal neurons.
        J. Neurovirol. 2007; 13: 56-66
        • Han Z.
        • Liu X.
        • Chen X.
        • Zhou X.
        • Du T.
        • Roizman B.
        • Zhou G.
        miR-h28 and miR-h29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells.
        Proc. Natl. Acad. Sci. 2016; 113: E894-E901
        • Harkness J.M.
        • Kader M.
        • DeLuca N.A.
        Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells.
        J. Virol. 2014; 88: 6847-6861
        • Held K.
        • Junker A.
        • Dornmair K.
        • Meinl E.
        • Sinicina I.
        • Brandt T.
        • Theil D.
        • Derfuss T.
        Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local t-cell infiltrates.
        J. Virol. 2011; 85: 9680-9685
        • Henderson G.
        • Jaber T.
        • Carpenter D.
        • Wechsler S.L.
        • Jones C.
        Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript.
        J. Neurovirol. 2009; 15: 439-448
        • Henderson G.
        • Peng W.
        • Jin L.
        • Perng G.-C.
        • Nesburn A.B.
        • Wechsler S.L.
        • Jones C.
        Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript.
        J. Neurovirol. 2002; 8: 103-111
        • Henderson G.
        • Perng G.-C.
        • Nesburn A.B.
        • Wechsler S.L.
        • Jones C.
        The latency-related gene encoded by bovine herpesvirus 1 can suppress caspase 3 and caspase 9 cleavage during productive infection.
        J. Neurovirol. 2004; 10: 64-70
        • Higaki S.
        • Fukuda M.
        • Shimomura Y.
        Virological and molecular biological evidence supporting herpes simplex virus type 1 corneal latency.
        Jpn. J. Ophthalmol. 2015; : 1-4
        • Hill J.M.
        • Garza H.
        • Su Y.-H.
        • Meegalla R.
        • Hanna L.A.
        • Loutsch J.M.
        • Thompson H.W.
        • Varnell E.D.
        • Bloom D.C.
        • Block T.M.
        A 437-base-pair deletion at the beginning of the latency-associated transcript promoter significantly reduced adrenergically induced herpes simplex virus type 1 ocular reactivation in latently infected rabbits.
        J. Virol. 1997; 71: 6555-6559
        • Hill J.M.
        • Gebhardt B.M.
        • Wen R.
        • Bouterie A.M.
        • Thompson H.W.
        • O’Callaghan R.J.
        • Halford W.P.
        • Kaufman H.E.
        Quantitation of herpes simplex virus type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency.
        J. Virol. 1996; 70: 3137-3141
        • Hill J.M.
        • Maggioncalda J.B.
        • Garza H.
        • Su Y.-H.
        • Fraser N.W.
        • Block T.M.
        In vivo epinephrine reactivation of ocular herpes simplex virus type 1 in the rabbit is correlated to a 370-base-pair region located between the promoter and the 5 end of the 2.0 kilobase latency-associated transcript.
        J. Virol. 1996; 70: 7270-7274
        • Hill J.M.
        • Patel A.
        • Bhattacharjee P.
        • Krause P.R.
        An HSV-1 chimeric containing HSV-2 latency associated transcript (LAT) sequences has significantly reduced adrenergic reactivation in the rabbit eye model.
        Cur. Eye Res. 2003; 26: 219-224
        • Hill J.M.
        • Quenelle D.C.
        • Cardin R.D.
        • Vogel J.L.
        • Clement C.
        • Bravo F.J.
        • Foster T.P.
        • Bosch-Marce M.
        • Raja P.
        • Lee J.S.
        • et al.
        Inhibition of lsd1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes.
        Sci. Transl. Med. 2014; 6 (265ra169–265ra169)
        • Hill J.M.
        • Sedarati F.
        • Javier R.T.
        • Wagner E.K.
        • Stevens J.G.
        Herpes simplex virus latent phase transcription facilitates in vivo reactivation.
        Virology. 1990; 174: 117-125
        • Himmelein S.
        • Lindemann A.
        • Sinicina I.
        • Strupp M.
        • Brandt T.
        • Hüfner K.
        Latent herpes simplex virus 1 infection does not induce apoptosis in human trigeminal ganglia.
        J. Virol. 2015; 89: 5747-5750
        • Ho D.Y.
        • Mocarski E.S.
        Herpes simplex virus latent rna (LAT) is not required for latent infection in the mouse.
        Proc. Natl. Acad. Sci. 1989; 86: 7596-7600
        • Hoshino Y.
        • Pesnicak L.
        • Cohen J.I.
        • Straus S.E.
        Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ t cells.
        J. Virol. 2007; 81: 8157-8164
        • Hui E.K.-W.
        • Lo S.J.
        Does the latency associated transcript (LAT) of herpes simplex virus (HSV) function as a ribozyme during viral reactivation?.
        Virus Genes. 1998; 16: 147-148
        • Imai Y.
        • Apakupakul K.
        • Krause P.R.
        • Halford W.P.
        • Margolis T.P.
        Investigation of the mechanism by which herpes simplex virus type 1 LAT sequences modulate preferential establishment of latent infection in mouse trigeminal ganglia.
        J. Virol. 2009; 83: 7873-7882
        • Inman M.
        • Perng G.-C.
        • Henderson G.
        • Ghiasi H.
        • Nesburn A.B.
        • Wechsler S.L.
        • Jones C.
        Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture.
        J. Virol. 2001; 75: 3636-3646
        • Izumi K.M.
        • McKelvey A.M.
        • Devi-Rao G.
        • Wagner E.K.
        • Stevens J.G.
        Molecular and biological characterization of a type 1 herpes simplex virus (HSV-1) specifically deleted for expression of the latency-associated transcript (LAT).
        Microb. Pathog. 1989; 7: 121-134
        • Jaber T.
        • Henderson G.
        • Li S.
        • Perng G.-C.
        • Carpenter D.
        • Wechsler S.L.
        • Jones C.
        Identification of a novel herpes simplex virus type 1 transcript and protein (al3) expressed during latency.
        J. Gen. Virol. 2009; 90: 2342-2352
        • Jarman R.G.
        • Loutsch J.M.
        • Devi-Rao G.B.
        • Marquart M.E.
        • Banaszak M.P.
        • Zheng X.
        • Hill J.M.
        • Wagner E.K.
        • Bloom D.C.
        The region of the HSV-1 latency-associated transcript required for epinephrine-induced reactivation in the rabbit does not include the 2.0-kb intron.
        Virology. 2002; 292: 59-69
        • Jarman R.G.
        • Wagner E.K.
        • Bloom D.C.
        Lat expression during an acute HSV infection in the mouse.
        Virology. 1999; 262: 384-397
        • Javier R.T.
        • Stevens J.G.
        • Dissette V.B.
        • Wagner E.K.
        A herpes simplex virus transcript abundant in latently infected neurons is dispensable for for establishment of the latent state.
        Virology. 1988; 166: 254-257
        • Jerome K.R.
        • Fox R.
        • Chen Z.
        • Sears A.E.
        • Lee H.-y.
        • Corey L.
        Herpes simplex virus inhibits apoptosis through the action of two genes, us5 and us3.
        J. Virol. 1999; 73: 8950-8957
        • Jiang X.
        • Brown D.
        • Osorio N.
        • Hsiang C.
        • BenMohamed L.
        • Wechsler S.L.
        Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dlat2903 with a disrupted LAT miR-h2.
        J. Neurovirol. 2016; 22: 38-49
        • Jiang X.
        • Brown D.
        • Osorio N.
        • Hsiang C.
        • Li L.
        • Chan L.
        • BenMohamed L.
        • Wechsler S.L.
        A herpes simplex virus type 1 mutant disrupted for microRNA h2 with increased neurovirulence and rate of reactivation.
        J. Neurovirol. 2015; 21: 199-209
        • Jiang X.
        • Chentoufi A.A.
        • Hsiang C.
        • Carpenter D.
        • Osorio N.
        • BenMohamed L.
        • Fraser N.W.
        • Jones C.
        • Wechsler S.L.
        The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived c1300 and neuro2a cells from granzyme b-induced apoptosis and cd8 t-cell killing.
        J. Virol. 2011; 85: 2325-2332
        • Jin L.
        • Carpenter D.
        • Moerdyk-Schauwecker M.
        • Vanarsdall A.L.
        • Osorio N.
        • Hsiang C.
        • Jones C.
        • Wechsler S.L.
        Cellular flip can substitute for the herpes simplex virus type 1 latency-associated transcript gene to support a wild-type virus reactivation phenotype in mice.
        J. Neurovirol. 2008; 14: 389-400
        • Jin L.
        • Peng W.
        • Perng G.-C.
        • Brick D.J.
        • Nesburn A.B.
        • Jones C.
        • Wechsler S.L.
        Identification of herpes simplex virus type 1 latency-associated transcript sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype.
        J. Virol. 2003; 77: 6556-6561
        • Jin L.
        • Perng G.-C.
        • Brick D.J.
        • Naito J.
        • Nesburn A.B.
        • Jones C.
        • Wechsler S.L.
        Methods for detecting the HSV-1 LAT anti-apoptosis activity in virus infected tissue culture cells.
        J. Virol. Methods. 2004; 118: 9-13
        • Jin L.
        • Perng G.-C.
        • Mott K.R.
        • Osorio N.
        • Naito J.
        • Brick D.J.
        • Carpenter D.
        • Jones C.
        • Wechsler S.L.
        A herpes simplex virus type 1 mutant expressing a baculovirus inhibitor of apoptosis gene in place of latency-associated transcript has a wild-type reactivation phenotype in the mouse.
        J. Virol. 2005; 79: 12286-12295
        • Jones C.
        • Inman M.
        • Peng W.
        • Henderson G.
        • Doster A.
        • Perng G.-C.
        • Angeletti A.K.
        The herpes simplex virus type 1 locus that encodes the latency-associated transcript enhances the frequency of encephalitis in male balb/c mice.
        J. Virol. 2005; 79: 14465-14469
        • Junejo F.
        • Brown S.M.
        Latent phenotype analysis of three deletion variants of herpes simplex virus type 1 (HSV-1) in mouse model.
        J.-Pak. Med. Assoc. 1995; 45 (99-99)
        • Jurak I.
        • Griffiths A.
        • Coen D.M.
        Mammalian alphaherpesvirus miRNAs.
        Biochim. Biophys. Acta, Gene Regul. Mech. 2011; 1809: 641-653
        • Jurak I.
        • Hackenberg M.
        • Kim J.Y.
        • Pesola J.M.
        • Everett R.D.
        • Preston C.M.
        • Wilson A.C.
        • Coen D.M.
        Expression of herpes simplex virus 1 microRNAs in cell culture models of quiescent and latent infection.
        J. Virol. 2014; 88: 2337-2339
        • Jurak I.
        • Kramer M.F.
        • Mellor J.C.
        • Van Lint A.L.
        • Roth F.P.
        • Knipe D.M.
        • Coen D.M.
        Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2.
        J. Virol. 2010; 84: 4659-4672
        • Jurak I.
        • Silverstein L.B.
        • Sharma M.
        • Coen D.M.
        Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity.
        J. Virol. 2012; 86 (Sep): 10093-10102
        • Kalamvoki M.
        • Du T.
        • Roizman B.
        Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing sting, viral mRNAs, and microRNAs.
        Proc. Natl. Acad. Sci. 2014; (201419338)
        • Kang W.
        • Mukerjee R.
        • Fraser N.W.
        Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript.
        Virology. 2003; 312: 233-244
        • Kather A.
        • Raftery M.J.
        • Devi-Rao G.
        • Lippmann J.
        • Giese T.
        • Sandri-Goldin R.M.
        • Schönrich G.
        Herpes simplex virus type 1 (HSV-1)-induced apoptosis in human dendritic cells as a result of downregulation of cellular flice-inhibitory protein and reduced expression of HSV-1 antiapoptotic latency-associated transcript sequences.
        J. Virol. 2010; 84: 1034-1046
        • Kaye S.
        • Lynas C.
        • Patterson A.
        • Risk J.
        • McCarthy K.
        • Hart C.
        Evidence for herpes simplex viral latency in the human cornea.
        Br. J. Ophthalmol. 1991; 75: 195-200
        • Kennedy D.P.
        • Clement C.
        • Arceneaux R.L.
        • Bhattacharjee P.S.
        • Huq T.S.
        • Hill J.M.
        Ocular HSV-1: is the cornea a reservoir for viral latency or a fast pit stop?.
        Cornea. 2011; 30: 251
        • Kenny J.J.
        • Krebs F.C.
        • Hartle H.T.
        • Gartner A.E.
        • Chatton B.
        • Leiden J.M.
        • Hoeffler J.P.
        • Weber P.C.
        • Wigdahl B.
        Identification of a second atf/creb-like element in the herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) promoter.
        Virology. 1994; 200: 220-235
        • Kenny J.J.
        • Millhouse S.
        • Wotring M.
        • Wigdahl B.
        Upstream stimulatory factor family binds to the herpes simplex virus type 1 latency-associated transcript promoter.
        Virology. 1997; 230: 381-391
        • Knickelbein J.E.
        • Khanna K.M.
        • Yee M.B.
        • Baty C.J.
        • Kinchington P.R.
        • Hendricks R.L.
        Noncytotoxic lytic granule-mediated CD8+ t cell inhibition of HSV-1 reactivation from neuronal latency.
        Science. 2008; 322: 268-271
        • Kobayashi M.
        • Wilson A.C.
        • Chao M.V.
        • Mohr I.
        Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor.
        Genes Dev. 2012; 26 (Jul): 1527-1532
        • Kramer M.F.
        • Coen D.M.
        Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus.
        J. Virol. 1995; 69: 1389-1399
        • Kramer M.F.
        • Jurak I.
        • Pesola J.M.
        • Boissel S.
        • Knipe D.M.
        • Coen D.M.
        Herpes simplex virus 1 micrornas expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia.
        Virology. 2011; 417: 239-247
        • Krause P.R.
        • Croen K.D.
        • Ostrove J.M.
        • Straus S.E.
        Structural and kinetic analyses of herpes simplex virus type 1 latency-associated transcripts in human trigeminal ganglia and in cell culture.
        J. Clin. Invest. 1990; 86: 235
        • Krause P.R.
        • Croen K.D.
        • Straus S.E.
        • Ostrove J.M.
        Detection and preliminary characterization of herpes simplex virus type 1 transcripts in latently infected human trigeminal ganglia.
        J. Virol. 1988; 62: 4819-4823
        • Krause P.R.
        • Stanberry L.R.
        • Bourne N.
        • Connelly B.
        • Kurawadwala J.F.
        • Patel A.
        • Straus S.E.
        Expression of the herpes simplex virus type 2 latency-associated transcript enhances spontaneous reactivation of genital herpes in latently infected guinea pigs.
        J. Exp. Med. 1995; 181: 297-306
        • Kriesel J.D.
        • Ricigliano J.
        • Spruance S.
        • Garza H.
        • Hill J.M.
        Neuronal reactivation of herpes simplex virus may involve interleukin-6.
        J. Neurovirol. 1997; 3: 441-448
        • Kristensson K.
        • Lycke E.
        • Sjöstrand J.
        Spread of herpes simplex virus in peripheral nerves.
        Acta Neuropathol. 1971; 17: 44-53
        • Krummenacher C.
        • Zabolotny J.M.
        • Fraser N.W.
        Selection of a nonconsensus branch point is influenced by an rna stem-loop structure and is important to confer stability to the herpes simplex virus 2-kilobase latency-associated transcript.
        J. Virol. 1997; 71: 5849-5860
        • Kubat N.J.
        • Amelio A.L.
        • Giordani N.V.
        • Bloom D.C.
        The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription.
        J. Virol. 2004; 78: 12508-12518
        • Kubat N.J.
        • Tran R.K.
        • McAnany P.
        • Bloom D.C.
        Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression.
        J. Virol. 2004; 78: 1139-1149
        • Kushnir A.S.
        • Davido D.J.
        • Schaffer P.A.
        Role of nuclear factor y in stress-induced activation of the herpes simplex virus type 1 ICP0 promoter.
        J. Virol. 2010; 84: 188-200
        • Kwiatkowski D.L.
        • Thompson H.W.
        • Bloom D.C.
        The polycomb group protein bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency.
        J. Virol. 2009; 83: 8173-8181
        • Labetoulle M.
        • Maillet S.
        • Efstathiou S.
        • Dezelee S.
        • Frau E.
        • Lafay F.
        HSV1 latency sites after inoculation in the lip: assessment of their localization and connections to the eye.
        Invest. Ophthalmol. Vis. Sci. 2003; 44: 217-225
        • Lachmann R.H.
        • Efstathiou S.
        Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system.
        J. Virol. 1997; 71: 3197-3207
        • Lagunoff M.
        • Randall G.
        • Roizman B.
        Phenotypic properties of herpes simplex virus 1 containing a derepressed open reading frame p gene.
        J. Virol. 1996; 70: 1810-1817
        • Lagunoff M.
        • Roizman B.
        Expression of a herpes simplex virus 1 open reading frame antisense to the gamma (1) 34.5 gene and transcribed by an RNA 3 coterminal with the unspliced latency-associated transcript.
        J. Virol. 1994; 68: 6021-6028
        • Lagunoff M.
        • Roizman B.
        The regulation of synthesis and properties of the protein product of open reading frame p of the herpes simplex virus 1 genome.
        J. Virol. 1995; 69: 3615-3623
        • Laycock K.A.
        • Lee S.F.
        • Stulting R.D.
        • Croen K.D.
        • Ostrove J.
        • Straus S.E.
        • Pepose J.S.
        Herpes simplex virus type 1 transcription is not detectable in quiescent human stromal keratitis by in situ hybridization.
        Invest. Ophthalmol. Vis. Sci. 1993; 34: 285-292
        • Lee L.Y.
        • Schaffer P.A.
        A virus with a mutation in the ICP4-binding site in the l/st promoter of herpes simplex virus type 1, but not a virus with a mutation in open reading frame p, exhibits cell-type-specific expression of γ134. 5 transcripts and latency-associated transcripts.
        J. Virol. 1998; 72: 4250-4264
        • Leger A.J.S.
        • Hendricks R.L.
        Cd8+ t cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivation.
        J. Neurovirol. 2011; 17: 528-534
        • Leib D.A.
        • Bogard C.L.
        • Kosz-Vnenchak M.
        • Hicks K.
        • Coen D.
        • Knipe D.
        • Schaffer P.
        A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency.
        J. Virol. 1989; 63: 2893-2900
        • Leib D.A.
        • Nadeau K.C.
        • Rundle S.A.
        • Schaffer P.A.
        The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional camp-response element: role of the latency-associated transcripts and camp in reactivation of viral latency.
        Proc. Natl. Acad. Sci. 1991; 88: 48-52
        • Li S.
        • Carpenter D.
        • Hsiang C.
        • Wechsler S.L.
        • Jones C.
        Herpes simplex virus type 1 latency-associated transcript inhibits apoptosis and promotes neurite sprouting in neuroblastoma cells following serum starvation by maintaining protein kinase b (akt) levels.
        J. Gen. Virol. 2010; 91: 858-866
        • Liang Y.
        • Quenelle D.
        • Vogel J.L.
        • Mascaro C.
        • Ortega A.
        • Kristie T.M.
        A novel selective lsd1/kdm1a inhibitor epigenetically blocks herpes simplex virus lytic replication and reactivation from latency.
        MBio. 2013; 4 (e00558–12)
        • Liang Y.
        • Vogel J.L.
        • Arbuckle J.H.
        • Rai G.
        • Jadhav A.
        • Simeonov A.
        • Maloney D.J.
        • Kristie T.M.
        Targeting the jmjd2 histone demethylases to epigenetically control herpesvirus infection and reactivation from latency.
        Sci. Transl. Med. 2013; 5 (167ra5-167ra5)
        • Liang Y.
        • Vogel J.L.
        • Narayanan A.
        • Peng H.
        • Kristie T.M.
        Inhibition of the histone demethylase lsd1 blocks α-herpesvirus lytic replication and reactivation from latency.
        Nat. Med. 2009; 15: 1312-1317
        • Liu Z.
        • Li S.
        • Chen J.
        • Liang S.
        Detection of herpes viral genome in corneal buttons of quiescet herpes simplex keratitis with polymerase chain reaction.
        Yan Ke Xue Bao. 1995; 11: 183-185
        • Lock M.
        • Miller C.
        • Fraser N.W.
        Analysis of protein expression from within the region encoding the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1.
        J. Virol. 2001; 75: 3413-3426
        • Lokensgard J.
        • Berthomme H.
        • Feldman L.T.
        The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the transcription start site for long-term expression during latency.
        J. Virol. 1997; 71: 6714-6719
        • Loutsch J.M.
        • Perng G.-C.
        • Hill J.M.
        • Zheng X.
        • Marquart M.E.
        • Block T.M.
        • Ghiasi H.
        • Nesburn A.B.
        • Wechsler S.L.
        Identical 371-base-pair deletion mutations in the LAT genes of herpes simplex virus type 1 mckrae and 17syn+ result in different in vivo reactivation phenotypes.
        J. Virol. 1999; 73: 767-771
        • Ma J.Z.
        • Russell T.A.
        • Spelman T.
        • Carbone F.R.
        • Tscharke D.C.
        Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response.
        PLoS Pathog. 2014; 10: e1004237
        • Maclean A.R.
        • Brown S.M.
        Deletion and duplication variants around the long repeats of herpes simplex virus type 1 strain 17.
        J. Gen. Virol. 1987; 68: 3019-3031
        • Mador N.
        • Braun E.
        • Haim H.
        • Ariel I.
        • Panet A.
        • Steiner I.
        Transgenic mouse with the herpes simplex virus type 1 latency-associated gene: expression and function of the transgene.
        J. Virol. 2003; 77: 12421-12429
        • Mador N.
        • Goldenberg D.
        • Cohen O.
        • Panet A.
        • Steiner I.
        Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line.
        J. Virol. 1998; 72: 5067-5075
        • Mador N.
        • Panet A.
        • Latchman D.
        • Steiner I.
        Expression and splicing of the latency-associated transcripts of herpes simplex virus type 1 in neuronal and non-neuronal cell lines.
        J. Biochem. 1995; 117: 1288-1297
        • Maggioncalda J.
        • Mehta A.
        • Fraser N.W.
        • Block T.M.
        Analysis of a herpes simplex virus type 1 LAT mutant with a deletion between the putative promoter and the 5 end of the 2.0-kilobase transcript.
        J. Virol. 1994; 68: 7816-7824
        • Maggioncalda J.
        • Mehta A.
        • Su Y.H.
        • Fraser N.W.
        • Block T.M.
        Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia.
        Virology. 1996; 225: 72-81
        • Maillet S.
        • Naas T.
        • Crepin S.
        • Roque-Afonso A.-M.
        • Lafay F.
        • Efstathiou S.
        • Labetoulle M.
        Herpes simplex virus type 1 latently infected neurons differentially express latency-associated and ICP0 transcripts.
        J. Virol. 2006; 80: 9310-9321
        • Margolis T.P.
        • Bloom D.C.
        • Dobson A.T.
        • Feldman L.T.
        • Stevens J.G.
        Decreased reporter gene expression during latent infection with HSV LAT promoter constructs.
        Virology. 1993; 197: 585-592
        • Margolis T.P.
        • Dawson C.R.
        • LaVail J.
        Herpes simplex viral infection of the mouse trigeminal ganglion. Immunohistochemical analysis of cell populations.
        Invest. Ophthalmol. Vis. Sci. 1992; 33: 259-267
        • Margolis T.P.
        • Imai Y.
        • Yang L.
        • Vallas V.
        • Krause P.R.
        Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts.
        J. Virol. 2007; 81: 1872-1878
        • Margolis T.P.
        • Sedarati F.
        • Dobson A.T.
        • Feldman L.T.
        • Stevens J.G.
        Pathways of viral gene expression during acute neuronal infection with HSV-1.
        Virology. 1992; 189: 150-160
        • Marquart M.E.
        • Zheng X.
        • Tran R.K.
        • Thompson H.W.
        • Bloom D.C.
        • Hill J.M.
        A camp response element within the latency-associated transcript promoter of HSV-1 facilitates induced ocular reactivation in a mouse hyperthermia model.
        Virology. 2001; 284: 62-69
        • Martin R.G.
        • Dawson C.R.
        • Jones P.
        • Togni B.
        • Lyons C.
        • Oh J.O.
        Herpesvirus in sensory and autonomic ganglia after eye infection: absence of chronic viral shedding.
        Arch. Ophthalmol. 1977; 95: 2053-2056
        • McGeoch D.J.
        • Cunningham C.
        • McIntyre G.
        • Dolan A.
        Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2.
        J. Gen. Virol. 1991; 72: 3057-3075
        • Mehta A.
        • Maggioncalda J.
        • Bagasra O.
        • Thikkavarapu S.
        • Saikumari P.
        • Valyi-Nagy T.
        • Fraser N.W.
        • Block T.M.
        In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice.
        Virology. 1995; 206: 633-640
        • Messer H.G.
        • Jacobs D.
        • Dhummakupt A.
        • Bloom D.C.
        Inhibition of H3K27me3-specific histone demethylases, JMJD3 and UTX, blocks reactivation of herpes simplex virus 1 in trigeminal ganglion neurons.
        J. Virol. 2014; (JVI–03052)
        • Millhouse S.
        • Kenny J.J.
        • Quinn P.G.
        • Lee V.
        • Wigdahl B.
        Atf/creb elements in the herpes simplex virus type 1 latency-associated transcript promoter interact with members of the atf/creb and ap-1 transcription factor families.
        J. Biomed. Sci. 1998; 5: 451-464
        • Mitchell W.
        • Deshmane S.
        • Dolan A.
        • McGeoch D.
        • Fraser N.
        Characterization of herpes simplex virus type 2 transcription during latent infection of mouse trigeminal ganglia.
        J. Virol. 1990; 64: 5342-5348
        • Mitchell W.J.
        • Gressens P.
        • Martin J.R.
        • DeSanto R.
        Herpes simplex virus type 1 DNA persistence, progressive disease and transgenic immediate early gene promoter activity in chronic corneal infections in mice.
        J. Gen. Virol. 1994; 75: 1201-1210
        • Mitchell W.J.
        • Lirette R.P.
        • Fraser N.W.
        Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1.
        J. Gen. Virol. 1990; 71: 125-132
        • Mitchell W.J.
        • Steiner I.
        • Brown S.M.
        • MacLean A.R.
        • Subak-Sharpe J.H.
        • Fraser N.W.
        A herpes simplex virus type 1 variant, deleted in the promoter region of the latency-associated transcripts, does not produce any detectable minor RNA species during latency in the mouse trigeminal ganglion.
        J. Gen. Virol. 1990; 71: 953-957
        • Miyagawa Y.
        • Marino P.
        • Verlengia G.
        • Uchida H.
        • Goins W.F.
        • Yokota S.
        • Geller D.A.
        • Yoshida O.
        • Mester J.
        • Cohen J.B.
        • et al.
        Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity.
        Proc. Natl. Acad. Sci. 2015; 112: E1632-E1641
        • Morris D.J.
        • Cleator G.M.
        • Klapper P.E.
        • Cooper R.J.
        • Biney E.
        • Dennett C.
        • Marcyniuk B.
        • Tullo A.B.
        Detection of herpes simplex virus DNA in donor cornea culture medium by polymerase chain reaction.
        Br. J. Ophthalmol. 1996; 80: 654-657
        • Mott K.R.
        • Allen S.J.
        • Zandian M.
        • Ghiasi H.
        Coregulatory interactions among CD8α dendritic cells, the latency-associated transcript, and programmed death 1 contribute to higher levels of herpes simplex virus 1 latency.
        J. Virol. 2014; 88: 6599-6610
        • Mott K.R.
        • Bresee C.J.
        • Allen S.J.
        • BenMohamed L.
        • Wechsler S.L.
        • Ghiasi H.
        Level of herpes simplex virus type 1 latency correlates with severity of corneal scarring and exhaustion of CD8+ t cells in trigeminal ganglia of latently infected mice.
        J. Virol. 2009; 83: 2246-2254
        • Mott K.R.
        • Gate D.
        • Matundan H.H.
        • Ghiasi Y.N.
        • Town T.
        • Ghiasi H.
        Cd8+ t cells play a bystander role in mice latently infected with herpes simplex virus 1.
        J. Virol. 2016; 90: 5059-5067
        • Mott K.R.
        • Osorio N.
        • Jin L.
        • Brick D.J.
        • Naito J.
        • Cooper J.
        • Henderson G.
        • Inman M.
        • Jones C.
        • Wechsler S.L.
        • et al.
        The bovine herpesvirus-1 lr orf2 is critical for this gene's ability to restore the high wild-type reactivation phenotype to a herpes simplex virus-1 LAT null mutant.
        J. Gen. Virol. 2003; 84: 2975-2985
        • Mott K.R.
        • Perng G.-C.
        • Osorio Y.
        • Kousoulas K.G.
        • Ghiasi H.
        A recombinant herpes simplex virus type 1 expressing two additional copies of gk is more pathogenic than wild-type virus in two different strains of mice.
        J. Virol. 2007; 81: 12962-12972
        • Mukerjee R.
        • Kang W.
        • Suri V.
        • Fraser N.W.
        A non-consensus branch point plays an important role in determining the stability of the 2-kb LAT intron during acute and latent infections of herpes simplex virus type-1.
        Virology. 2004, Jul; 324: 340-349
        • Mulik S.
        • Xu J.
        • Reddy P.B.
        • Rajasagi N.K.
        • Gimenez F.
        • Sharma S.
        • Lu P.Y.
        • Rouse B.T.
        Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus.
        Am. J. Pathol. 2012; 181: 525-534
        • Munson D.J.
        • Burch A.D.
        A novel miRNA produced during lytic HSV-1 infection is important for efficient replication in tissue culture.
        Arch. Virol. 2012; 157: 1677-1688
        • Naito J.
        • Mukerjee R.
        • Mott K.R.
        • Kang W.
        • Osorio N.
        • Fraser N.W.
        • Perng G.-C.
        Identification of a protein encoded in the herpes simplex virus type 1 latency associated transcript promoter region.
        Virus Res. 2005; 108: 101-110
        • Ng A.K.
        • Block T.M.
        • Aiamkitsumrit B.
        • Wang M.
        • Clementi E.
        • Wu T.-T.
        • Taylor J.M.
        • Su Y.-H.
        Construction of a herpes simplex virus type 1 mutant with only a three-nucleotide change in the branchpoint region of the latency-associated transcript (LAT) and the stability of its two-kilobase LAT intron.
        J. Virol. 2004; 78: 12097-12106
        • Nicoll M.
        • Proença J.
        • Connor V.
        • Efstathiou S.
        Influence of herpes simplex virus 1 latency-associated transcripts on the establishment and maintenance of latency in the rosa26r reporter mouse model.
        J. Virol. 2012; 86: 8848-8858
        • Nicoll M.P.
        • Hann W.
        • Shivkumar M.
        • Harman L.E.
        • Connor V.
        • Coleman H.M.
        • Proença J.T.
        • Efstathiou S.
        The HSV-1 latency-associated transcript functions to repress latent phase lytic gene expression and suppress virus reactivation from latently infected neurons.
        PLoS Pathog. 2016; 12: e1005539
        • Nicosia M.
        • Deshmane S.
        • Zabolotny J.
        • Valyi-Nagy T.
        • Fraser N.
        Herpes simplex virus type 1 latency-associated transcript (LAT) promoter deletion mutants can express a 2-kilobase transcript mapping to the LAT region.
        J. Virol. 1993; 67: 7276-7283
        • Nicosia M.
        • Zabolotny J.M.
        • Lirette R.P.
        • Fraser N.W.
        The HSV-1 2-kb latency-associated transcript is found in the cytoplasm comigrating with ribosomal subunits during productive infection.
        Virology. 1994; 204: 717-728
        • O’Brien W.J.
        • Taylor J.L.
        The isolation of herpes simplex virus from rabbit corneas during latency.
        Invest. Ophthalmol. Vis. Sci. 1989; 30: 357-364
        • O’brien W.J.
        • Tsao L.-S.
        • Taylor J.L.
        Tissue-specific accumulation of latency-associated transcripts in herpes virus-infected rabbits.
        Invest. Ophthalmol. Vis. Sci. 1998; 39: 1847-1853
        • O’Neil J.
        • Loutsch J.
        • Aguilar J.
        • Hill J.
        • Wagner E.
        • Bloom D.
        Wide variations in herpes simplex virus type 1 inoculum dose and latency-associated transcript expression phenotype do not alter the establishment of latency in the rabbit eye model.
        J. Virol. 2004; 78: 5038-5044
        • Openshaw H.
        Latency of herpes simplex virus in ocular tissue of mice.
        Infect. Immun. 1983; 39: 960-962
        • Openshaw H.
        • McNeill J.I.
        • Lin X.H.
        • Niland J.
        • Cantin E.M.
        Herpes simplex virus DNA in normal corneas: persistence without viral shedding from ganglia.
        J. Med. Virol. 1995; 46: 75-80
        • O’Rourke D.
        • O’Hare P.
        Mutually exclusive binding of two cellular factors within a critical promoter region of the gene for the ie110k protein of herpes simplex virus.
        J. Virol. 1993; 67: 7201-7214
        • Paine Jr., T.F.
        Latent herpes simplex infection in man.
        Bacteriol. Rev. 1964; 28: 472
        • Pan D.
        • Flores O.
        • Umbach J.L.
        • Pesola J.M.
        • Bentley P.
        • Rosato P.C.
        • Leib D.A.
        • Cullen B.R.
        • Coen D.M.
        A neuron-specific host microrna targets herpes simplex virus-1 ICP0 expression and promotes latency.
        Cell Host Microbe. 2014; 15: 446-456
        • Pan D.
        • Pesola J.M.
        • Li G.
        • McCarron S.
        • Coen D.M.
        Mutations inactivating herpes simplex virus-1 miR-h2 do not detectably increase ICP0 gene expression in infected cultured cells or mouse trigeminal ganglia.
        J. Virol. 2016; (JVI–02001)
        • Panagiotidis C.A.
        • Lium E.K.
        • Silverstein S.J.
        Physical and functional interactions between herpes simplex virus immediate-early proteins ICP4 and ICP27.
        J. Virol. 1997, Feb; 71: 1547-1557
        • Pavan-Langston D.
        • Rong B.-L.
        • Dunkel E.C.
        Extraneuronal herpetic latency: animal and human corneal studies.
        Acta Ophthalmol. 1989; 67: 135-141
        • Peng W.
        • Henderson G.
        • Inman M.
        • BenMohamed L.
        • Perng G.-C.
        • Wechsler S.L.
        • Jones C.
        The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice.
        J. Virol. 2005; 79: 6162-6171
        • Peng W.
        • Henderson G.
        • Perng G.-C.
        • Nesburn A.B.
        • Wechsler S.L.
        • Jones C.
        The gene that encodes the herpes simplex virus type 1 latency-associated transcript influences the accumulation of transcripts (bcl-xl and bcl-xs) that encode apoptotic regulatory proteins.
        J. Virol. 2003; 77: 10714-10718
        • Peng W.
        • Jin L.
        • Henderson G.
        • Perng G.
        • Brick D.
        • Nesburn A.
        • Wechsler S.
        • Jones C.
        Mapping herpes simplex virus type 1 latency-associated transcript sequences that protect from apoptosis mediated by a plasmid expressing caspase-8.
        J. Neurovirol. 2004; 10: 260-265
        • Peng W.
        • Vitvitskaia O.
        • Carpenter D.
        • Wechsler S.L.
        • Jones C.
        Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1-encoded latency-associated transcript.
        J. Neurovirol. 2008; 14: 41-52
        • Peng Z.
        • Yuan C.
        • Zellmer L.
        • Liu S.
        • Xu N.
        • Liao D.J.
        Hypothesis: artifacts, including spurious chimeric RNAs with a short homologous sequence, caused by consecutive reverse transcriptions and endogenous random primers.
        J. Cancer. 2015; 6: 555
        • Perng G.-C.
        • Chokephaibulkit K.
        • Thompson R.L.
        • Sawtell N.M.
        • Slanina S.M.
        • Ghiasi H.
        • Nesburn A.B.
        • Wechsler S.L.
        The region of the herpes simplex virus type 1 LAT gene that is colinear with the ICP34. 5 gene is not involved in spontaneous reactivation.
        J. Virol. 1996; 70: 282-291
        • Perng G.-C.
        • Dunkel E.C.
        • Geary P.A.
        • Slanina S.M.
        • Ghiasi H.
        • Kaiwar R.
        • Nesburn A.B.
        • Wechsler S.L.
        The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency.
        J. Virol. 1994; 68: 8045-8055
        • Perng G.-C.
        • Esmaili D.
        • Slanina S.M.
        • Yukht A.
        • Ghiasi H.
        • Osorio N.
        • Mott K.R.
        • Maguen B.
        • Jin L.
        • Nesburn A.B.
        • et al.
        Three herpes simplex virus type 1 latency-associated transcript mutants with distinct and asymmetric effects on virulence in mice compared with rabbits.
        J. Virol. 2001; 75: 9018-9028
        • Perng G.-C.
        • Ghiasi H.
        • Slanina S.M.
        • Nesburn A.B.
        • Wechsler S.L.
        The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript.
        J. Virol. 1996; 70: 976-984
        • Perng G.-C.
        • Jones C.
        • Ciacci-Zanella J.
        • Stone M.
        • Henderson G.
        • Yukht A.
        • Slanina S.M.
        • Hofman F.M.
        • Ghiasi H.
        • Nesburn A.B.
        • et al.
        Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript.
        Science. 2000; 287: 1500-1503
        • Perng G.-C.
        • Maguen B.
        • Jin L.
        • Mott K.R.
        • Kurylo J.
        • BenMohamed L.
        • Yukht A.
        • Osorio N.
        • Nesburn A.B.
        • Henderson G.
        • et al.
        A novel herpes simplex virus type 1 transcript (al-RNA) antisense to the 5 end of the latency-associated transcript produces a protein in infected rabbits.
        J. Virol. 2002; 76: 8003-8010
        • Perng G.-C.
        • Maguen B.
        • Jin L.
        • Mott K.R.
        • Osorio N.
        • Slanina S.M.
        • Yukht A.
        • Ghiasi H.
        • Nesburn A.B.
        • Inman M.
        • et al.
        A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels.
        J. Virol. 2002; 76: 1224-1235
        • Perng G.-C.
        • Slanina S.M.
        • Ghiasi H.
        • Nesburn A.B.
        • Wechsler S.L.
        A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1.
        J. Virol. 1996; 70: 2014-2018
        • Perng G.-C.
        • Slanina S.M.
        • Ghiasi H.
        • Nesburn A.B.
        • Wechsler S.L.
        The effect of latency-associated transcript on the herpes simplex virus type 1 latency-reactivation phenotype is mouse strain-dependent.
        J. Gen. Virol. 2001; 82: 1117-1122
        • Perng G.-C.
        • Slanina S.M.
        • Yukht A.
        • Drolet B.S.
        • Keleher W.
        • Ghiasi H.
        • Nesburn A.B.
        • Wechsler S.L.
        A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation.
        J. Virol. 1999; 73: 920-929
        • Perng G.-C.
        • Slanina S.M.
        • Yukht A.
        • Ghiasi H.
        • Nesburn A.B.
        • Wechsler S.L.
        The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits.
        J. Virol. 2000; 74: 1885-1891
        • Perng G.-C.
        • Thompson R.L.
        • Sawtell N.M.
        • Taylor W.E.
        • Slanina S.M.
        • Ghiasi H.
        • Kaiwar R.
        • Nesburn A.B.
        • Wechsler S.L.
        An avirulent ICP34. 5 deletion mutant of herpes simplex virus type 1 is capable of in vivo spontaneous reactivation.
        J. Virol. 1995; 69: 3033-3041
        • Perng G.-C.
        • Zwaagstra J.C.
        • Ghiasi H.
        • Kaiwar R.
        • Brown D.J.
        • Nesburn A.B.
        • Wechsler S.L.
        Similarities in regulation of the HSV-1 LAT promoter in corneal and neuronal cells.
        Invest. Ophthalmol. Vis. Sci. 1994; 35: 2981-2989
        • Pfeffer S.
        • Sewer A.
        • Lagos-Quintana M.
        • Sheridan R.
        • Sander C.
        • Grässer F.A.
        • van Dyk L.F.
        • Ho C.K.
        • Shuman S.
        • Chien M.
        • et al.
        Identification of micrornas of the herpesvirus family.
        Nat. Methods. 2005; 2: 269-276
        • Pfeffer S.
        • Zavolan M.
        • Grässer F.A.
        • Chien M.
        • Russo J.J.
        • Ju J.
        • John B.
        • Enright A.J.
        • Marks D.
        • Sander C.
        • et al.
        Identification of virus-encoded microRNAs.
        Science. 2004; 304: 734-736
        • Plummer G.
        Isolation of herpesvimses from trigeminal ganglia of man, monkeys, and cats.
        J. Infect. Dis. 1973; 128: 345-348
        • Poon A.P.
        • Liang Y.
        • Roizman B.
        Herpes simplex virus 1 gene expression is accelerated by inhibitors of histone deacetylases in rabbit skin cells infected with a mutant carrying a cDNA copy of the infected-cell protein no. 0.
        J. Virol. 2003, Dec; 77: 12671-12678
        • Poon A.P.
        • Silverstein S.J.
        • Roizman B.
        An early regulatory function required in a cell type-dependent manner is expressed by the genomic but not the cDNA copy of the herpes simplex virus 1 gene encoding infected cell protein 0.
        J. Virol. 2002; 76 (Oct): 9744-9755
        • Preston C.M.
        • Nicholl M.J.
        Human cytomegalovirus tegument protein pp71 directs long-term gene expression from quiescent herpes simplex virus genomes.
        J. Virol. 2005; 79 (Jan): 525-535
        • Proença J.T.
        • Coleman H.M.
        • Connor V.
        • Winton D.J.
        • Efstathiou S.
        A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones.
        J. Gen. Virol. 2008; 89: 2965-2974
        • Puga A.
        • Notkins A.L.
        Continued expression of a poly (a)+ transcript of herpes simplex virus type 1 in trigeminal ganglia of latently infected mice.
        J. Virol. 1987; 61: 1700-1703
        • Puga A.
        • Rosenthal J.D.
        • Openshaw H.
        • Notkins A.L.
        Herpes simplex virus DNA and mrna sequences in acutely and chronically infected trigeminal ganglia of mice.
        Virology. 1978; 89: 102-111
        • Rader K.A.
        • Ackland-Berglund C.E.
        • Miller J.K.
        • Pepose J.S.
        • Leib D.A.
        In vivo characterization of site-directed mutations in the promoter of the herpes simplex virus type 1 latency-associated transcripts.
        J. Gen. Virol. 1993; 74: 1859-1869
        • Ramakrishnan R.
        • Fink D.J.
        • Jiang G.
        • Desai P.
        • Glorioso J.C.
        • Levine M.
        Competitive quantitative pcr analysis of herpes simplex virus type 1 DNA and latency-associated transcript RNA in latently infected cells of the rat brain.
        J. Virol. 1994; 68: 1864-1873
        • Ramakrishnan R.
        • Levine M.
        • Fink D.J.
        PCR-based analysis of herpes simplex virus type 1 latency in the rat trigeminal ganglion established with a ribonucleotide reductase-deficient mutant.
        J. Virol. 1994; 68: 7083-7091
        • Ramakrishnan R.
        • Poliani P.L.
        • Levine M.
        • Glorioso J.C.
        • Fink D.J.
        Detection of herpes simplex virus type 1 latency-associated transcript expression in trigeminal ganglia by in situ reverse transcriptase PCR.
        J. Virol. 1996; 70: 6519-6523
        • Rand K.
        • Berns K.
        • Rayfield M.
        Recovery of herpes simplex type 1 from the celiac ganglion after renal transplantation.
        South. Med. J. 1984; 77: 403-404
        • Randall G.
        • Lagunoff M.
        • Roizman B.
        The product of ORF O located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site.
        Proc. Natl. Acad. Sci. 1997; 94: 10379-10384
        • Randall G.
        • Lagunoff M.
        • Roizman B.
        Herpes simplex virus 1 open reading frames o and p are not necessary for establishment of latent infection in mice.
        J. Virol. 2000; 74: 9019-9027
        • Randall G.
        • Roizman B.
        Transcription of the derepressed open reading frame p of herpes simplex virus 1 precludes the expression of the antisense gamma (1) 34.5 gene and may account for the attenuation of the mutant virus.
        J. Virol. 1997; 71: 7750-7757
        • Reeves W.
        • DiGiacomo R.
        • Alexander E.
        • Lee C.
        Latent herpesvirus hominis from trigeminal and sacral dorsal root ganglia of cebus monkeys.
        Exp. Biol. Med. 1976; 153: 258-261
        • Rock D.
        • Nesburn A.
        • Ghiasi H.
        • Ong J.
        • Lewis T.
        • Lokensgard J.
        • Wechsler S.
        Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1.
        J. Virol. 1987; 61: 3820-3826
        • Rødahl E.
        • Haarr L.
        Analysis of the 2-kilobase latency-associated transcript expressed in pc12 cells productively infected with herpes simplex virus type 1: evidence for a stable, nonlinear structure.
        J. Virol. 1997; 71: 1703-1707
        • Rødahl E.
        • Stevens J.G.
        Differential accumulation of herpes simplex virus type 1 latency-associated transcripts in sensory and autonomic ganglia.
        Virology. 1992; 189: 385-388
        • Rong B.
        • Pavan-Langston D.
        • Weng Q.
        • Martinez R.
        • Cherry J.
        • Dunkel E.
        Detection of herpes simplex virus thymidine kinase and latency-associated transcript gene sequences in human herpetic corneas by polymerase chain reaction amplification.
        Invest. Ophthalmol. Vis. Sci. 1991; 32: 1808-1815
        • Ru J.
        • Sun H.
        • Fan H.
        • Wang C.
        • Li Y.
        • Liu M.
        • Tang H.
        Mir-23a facilitates the replication of HSV-1 through the suppression of interferon regulatory factor 1.
        PloS one. 2014; 9: e114021
        • Russell T.A.
        • Tscharke D.C.
        Lytic promoters express protein during herpes simplex virus latency.
        PLoS Pathog. 2016; 12: e1005729
        • Sabbaga E.M.
        • Pavan-Langston D.
        • Bean K.M.
        • Dunkel E.C.
        Detection of HSV nucleic acid sequences in the cornea during acute and latent ocular disease.
        Exp. Eye Res. 1988; 47: 545-553
        • Samaniego L.A.
        • Neiderhiser L.
        • DeLuca N.A.
        Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins.
        J. Virol. 1998; 72: 3307-3320
        • Sawtell N.
        The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia.
        J. Virol. 1998; 72: 6888-6892
        • Sawtell N.
        • Poon D.
        • Tansky C.
        • Thompson R.
        The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation.
        J. Virol. 1998; 72: 5343-5350
        • Sawtell N.
        • Thompson R.
        Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency.
        J. Virol. 1992; 66: 2157-2169
        • Saxena A.
        • Carninci P.
        Long non-coding RNA modifies chromatin.
        Bioessays. 2011; 33: 830-839
        • Sedarati F.
        • Izumi K.
        • Wagner E.
        • Stevens J.
        Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons.
        J. Virol. 1989; 63: 4455-4458
        • Shen W.
        • e Silva M.S.
        • Jaber T.
        • Vitvitskaia O.
        • Li S.
        • Henderson G.
        • Jones C.
        Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis.
        J. Virol. 2009; 83: 9131-9139
        • Shimeld C.
        • Hill T.
        • Blyth W.
        • Easty D.
        Reactivation of latent infection and induction of recurrent herpetic eye disease in mice.
        J. Gen. Virol. 1990; 71: 397-404
        • Shimeld C.
        • Tullo A.
        • Easty D.
        • Thomsitt J.
        Isolation of herpes simplex virus from the cornea in chronic stromal keratitis.
        Br. J. Ophthalmol. 1982; 66: 643
        • Shimeld C.
        • Tullo A.
        • Hill T.
        • Blyth W.
        • Easty D.
        Spread of herpes simplex virus and distribution of latent infection after intraocular infection of the mouse.
        Arch. Virol. 1985; 85: 175-187
        • Shimomura Y.
        • Dudley J.
        • Gangarosa L.
        • Hill J.
        Hsv-1 quantitation from rabbit neural tissues after epinephrine-induced reactivation.
        Invest. Ophthalmol. Vis. Sci. 1985; 26: 121-125
        • Shimomura Y.
        • Mori Y.
        • Inoue Y.
        • Kiritooshi A.
        • Ohashi Y.
        • Manabe R.
        Herpes simplex virus latency in human cornea.
        Jpn. J. Ophthalmol. 1992; 37: 318-324
        • Shivkumar M.
        • Milho R.
        • May J.S.
        • Nicoll M.P.
        • Efstathiou S.
        • Stevenson P.G.
        Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry.
        J. Virol. 2013; 87: 10477-10488
        • Shu M.
        • Du T.
        • Zhou G.
        • Roizman B.
        Role of activating transcription factor 3 in the synthesis of latency-associated transcript and maintenance of herpes simplex virus 1 in latent state in ganglia.
        Proc. Natl. Acad. Sci. 2015; 112: E5420-E5426
        • Singh J.
        • Wagner E.K.
        Transcriptional analysis of the herpes simplex virus type 1 region containing the TRL/UL junction.
        Virology. 1993; 196: 220-231
        • Smith R.
        • Escudero J.
        • Wilcox O.
        Regulation of the herpes simplex virus latency-associated transcripts during establishment of latency in sensory neurons in vitro.
        Virology. 1994; 202: 49-60
        • Soares K.
        • Hwang D.-Y.
        • Ramakrishnan R.
        • Schmidt M.C.
        • Fink D.J.
        • Glorioso J.C.
        cis-acting elements involved in transcriptional regulation of the herpes simplex virus type 1 latency-associated promoter 1 LAP in vitro and in vivo.
        J. Virol. 1996; 70: 5384-5394
        • Spivack J.G.
        • Fraser N.W.
        Detection of herpes simplex virus type 1 transcripts during latent infection in mice.
        J. Virol. 1987; 61: 3841-3847
        • Spivack J.G.
        • Fraser N.W.
        Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection.
        J. Virol. 1988; 62: 1479-1485
        • Spivack J.G.
        • Woods G.M.
        • Fraser N.W.
        Identification of a novel latency-specific splice donor signal within the herpes simplex virus type 1 2.0-kilobase latency-associated transcript (LAT): translation inhibition of LAT open reading frames by the intron within the 2.0-kilobase LAT.
        J. Virol. 1991; 65: 6800-6810
        • Srivastava R.
        • Dervillez X.
        • Khan A.A.
        • Chentoufi A.A.
        • Chilukuri S.
        • Shukr N.
        • Fazli Y.
        • Ong N.N.
        • Afifi R.E.
        • Osorio N.
        • et al.
        The herpes simplex virus latency-associated transcript gene is associated with a broader repertoire of virus-specific exhausted CD8+ t cells retained within the trigeminal ganglia of latently infected hla transgenic rabbits.
        J. Virol. 2016; 90: 3913-3928
        • Steiner I.
        • Mador N.
        • Reibstein I.
        • Spivack J.
        • Fraser N.
        Herpes simplex virus type 1 gene expression and reactivation of latent infection in the central nervous system.
        Neuropathol. Appl. Neurobiol. 1994; 20: 253-260
        • Steiner I.
        • Spivack J.
        • Lirette R.
        • Brown S.
        • MacLean A.
        • Subak-Sharpe J.
        • Fraser N.
        Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection.
        EMBO J. 1989; 8: 505
        • Stevens J.
        • Nesburn A.
        • Cook M.
        Latent herpes simplex virus from trigeminal ganglia of rabbits with recurrent eye infection.
        Nature. 1972; 235: 216-217
        • Stevens J.
        • Wagner E.
        • Devi-Rao G.
        • Cook M.
        • Feldman L.
        RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons.
        Science. 1987; 235: 1056-1059
        • Stevens J.G.
        • Cook M.L.
        Latent herpes simplex virus in spinal ganglia of mice.
        Science. 1971; 173: 843-845
        • Stevens J.G.
        • Haarr L.
        • Porter D.D.
        • Cook M.L.
        • Wagner E.K.
        Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans.
        J. Infect. Dis. 1988; 158: 117-123
        • Stow N.D.
        • Stow E.C.
        Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide vmw110.
        J. Gen. Virol. 1986; 67: 2571-2585
        • Stroop W.
        • Rock D.
        • Fraser N.
        Localization of herpes simplex virus in the trigeminal and olfactory systems of the mouse central nervous system during acute and latent infections by in situ hybridization.
        Lab. Invest.; a J. Tech. Methods Pathology. 1984; 51: 27-38
        • Szpara M.L.
        • Gatherer D.
        • Ochoa A.
        • Greenbaum B.
        • Dolan A.
        • Bowden R.J.
        • Enquist L.W.
        • Legendre M.
        • Davison A.J.
        Evolution and diversity in human herpes simplex virus genomes.
        J. Virol. 2014; 88: 1209-1227
        • Tanaka S.
        • Minagawa H.
        • Toh Y.
        • Liu Y.
        • Mori R.
        Analysis by RNA-PCR of latency and reactivation of herpes simplex virus in multiple neuronal tissues.
        J. Gen. Virol. 1994; 75: 2691-2698
        • Tang S.
        • Bertke A.S.
        • Patel A.
        • Margolis T.P.
        • Krause P.R.
        Herpes simplex virus 2 microrna miR-h6 is a novel latency-associated transcript-associated microRNA, but reduction of its expression does not influence the establishment of viral latency or the recurrence phenotype.
        J. Virol. 2011; 85: 4501-4509
        • Tang S.
        • Bertke A.S.
        • Patel A.
        • Wang K.
        • Cohen J.I.
        • Krause P.R.
        An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34. 5, a viral neurovirulence factor.
        Proc. Natl. Acad. Sci. 2008; 105: 10931-10936
        • Tang S.
        • Patel A.
        • Krause P.R.
        Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34. 5 and ICP0 mrnas.
        J. Virol. 2009; 83: 1433-1442
        • Tang S.
        • Patel A.
        • Krause P.R.
        Herpes simplex virus ICP27 regulates alternative pre-mrna polyadenylation and splicing in a sequence-dependent manner.
        Proc. Natl. Acad. Sci. 2016; (201609695)
        • Tenser R.
        • Hsiung G.
        Pathogenesis of latent herpes simplex virus infection of the trigeminal ganglion in guinea pigs: effects of age, passive immunization, and hydrocortisone.
        Infect. Immun,. 1977; 16: 69-74
        • Tenser R.B.
        • Dawson M.
        • Ressel S.J.
        • Dunstan M.E.
        Detection of herpes simplex virus mRNA in latently infected trigeminal ganglion neurons by in situ hybridization.
        Ann. Neurol. 1982; 11: 285-291
        • Theil D.
        • Derfuss T.
        • Paripovic I.
        • Herberger S.
        • Meinl E.
        • Schueler O.
        • Strupp M.
        • Arbusow V.
        • Brandt T.
        Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response.
        Am. J. Pathol. 2003; 163: 2179-2184
        • Thomas D.L.
        • Lock M.
        • Zabolotny J.M.
        • Mohan B.R.
        • Fraser N.W.
        The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in sy5y and cos-1 cells.
        J. Virol. 2002; 76: 532-540
        • Thomas S.
        • Gough G.
        • Latchman D.
        • et al.
        Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency.
        J. Virol. 1999; 73: 6618-6625
        • Thomas S.
        • Lilley C.
        • Latchman D.
        • Coffin R.
        A protein encoded by the herpes simplex virus (HSV) type 1 2-kilobase latency-associated transcript is phosphorylated, localized to the nucleus, and overcomes the repression of expression from exogenous promoters when inserted into the quiescent HSV genome.
        J. Virol. 2002; 76: 4056-4067
        • Thompson R.
        • Sawtell N.
        Hsv latency-associated transcript and neuronal apoptosis.
        Science. 2000; 289 (1651-1651)
        • Thompson R.
        • Sawtell N.
        Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival.
        J. Virol. 2001; 75: 6660-6675
        • Thompson R.
        • Shieh M.T.
        • Sawtell N.
        Analysis of herpes simplex virus ICP0 promoter function in sensory neurons during acute infection, establishment of latency, and reactivation in vivo.
        J. Virol. 2003; 77: 12319-12330
        • Thompson R.L.
        • Sawtell N.
        The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency.
        J. Virol. 1997; 71: 5432-5440
        • Thompson R.L.
        • Sawtell N.M.
        The herpes simplex virus type 1 latency associated transcript locus is required for the maintenance of reactivation competent latent infections.
        J. Neurovirol. 2011; 17: 552-558
        • Trousdale M.
        • Steiner I.
        • Spivack J.
        • Deshmane S.
        • Brown S.
        • MacLean A.
        • Subak-Sharpe J.
        • Fraser N.
        In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model.
        J. Virol. 1991; 65: 6989-6993
        • Tullo A.
        • Easty D.
        • Shimeld C.
        • Stirling P.
        • Darville J.
        Isolation of herpes simplex virus from corneal discs of patients with chronic stromal keratitis.
        in: Herpetic Eye Diseases. Springer, 1985: 57-66
        • Umbach J.L.
        • Cullen B.R.
        The role of RNAi and microRNAs in animal virus replication and antiviral immunity.
        Genes Dev. 2009; 23: 1151-1164
        • Umbach J.L.
        • Kramer M.F.
        • Jurak I.
        • Karnowski H.W.
        • Coen D.M.
        • Cullen B.R.
        MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mrnas.
        Nature. 2008; 454: 780-783
        • Umbach J.L.
        • Nagel M.A.
        • Cohrs R.J.
        • Gilden D.H.
        • Cullen B.R.
        Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia.
        J. Virol. 2009; 83: 10677-10683
        • Wagner E.
        • Flanagan W.
        • Devi-Rao G.
        • Zhang Y.
        • Hill J.
        • Anderson K.
        • Stevens J.
        The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection.
        J. Virol. 1988; 62: 4577-4585
        • Wagner E.K.
        • Bloom D.C.
        Experimental investigation of herpes simplex virus latency.
        Clin. Microbiol. Rev. 1997; 10: 419-443
        • Wagner E.K.
        • Devi-Rao G.
        • Feldman L.
        • Dobson A.
        • Zhang Y.
        • Flanagan W.
        • Stevens J.
        Physical characterization of the herpes simplex virus latency-associated transcript in neurons.
        J. Virol. 1988; 62: 1194-1202
        • Wang K.
        • Pesnicak L.
        • Guancial E.
        • Krause P.R.
        • Straus S.E.
        The 2.2-kilobase latency-associated transcript of herpes simplex virus type 2 does not modulate viral replication, reactivation, or establishment of latency in transgenic mice.
        J. Virol. 2001; 75: 8166-8172
        • Wang K.
        • Pesnicak L.
        • Straus S.E.
        Mutations in the 5 end of the herpes simplex virus type 2 latency-associated transcript (LAT) promoter affect LAT expression in vivo but not the rate of spontaneous reactivation of genital herpes.
        J. Virol. 1997; 71: 7903-7910
        • Wang Q.-Y.
        • Zhou C.
        • Johnson K.E.
        • Colgrove R.C.
        • Coen D.M.
        • Knipe D.M.
        Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection.
        Proc. Natl. Acad. Sci. of the United States of America. 2005; 102: 16055-16059
        • Warren K.
        • Marusyk R.
        • Lewis M.E.
        • Jeffrey V.M.
        Recovery of latent herpes simplex virus from human trigeminal nerve roots.
        Arch. Virol. 1982; 73: 85-89
        • Warren K.G.
        • Brown S.M.
        • Wroblewska Z.
        • Gilden D.
        • Koprowski H.
        • Subak-Sharpe J.
        Isolation of latent herpes simplex virus from the superior cervical and vagus ganglions of human beings.
        N. Engl. J. Med. 1978; 298: 1068-1069
        • Watson Z.
        • Dhummakupt A.
        • Messer H.
        • Phelan D.
        • Bloom D.
        Role of polycomb proteins in regulating HSV-1 latency.
        Viruses. 2013; 5: 1740-1757
        • Wechsler S.
        • Nesburn A.
        • Watson R.
        • Slanina S.
        • Ghiasi H.
        Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames.
        J. Virol. 1988; 62: 4051-4058
        • Wechsler S.L.
        • Nesburn A.B.
        • Watson R.
        • Slanina S.
        • Ghiasi H.
        Fine mapping of the major latency-related RNA of herpes simplex virus type 1 in humans.
        J. Gen. Virol. 1988; 69: 3101-3106
        • Wechsler S.L.
        • Nesburn A.B.
        • Zwaagstra J.
        • Ghiasi H.
        Sequence of the latency-related gene of herpes simplex virus type 1.
        Virology. 1989; 168: 168-172
        • Wheatley S.
        • Dent C.
        • Wood J.
        • Latchman D.
        A cellular factor binding to the taatgarat DNA sequence prevents the expression of the HSV immediate-early genes following infection of nonpermissive cell lines derived from dorsal root ganglion neurons.
        Exp. Cell Res. 1991; 194: 78-82
        • Wheatley S.
        • Kemp L.
        • Wood J.
        • Latchman D.
        Cell lines derived from dorsal root ganglion neurons are nonpermissive for HSV and express only the latency-associated transcript following infection.
        Exp. Cell Res. 1990; 190: 243-246
        • Wroblewska Z.
        • Spivack J.G.
        • Otte J.
        • Steiner I.
        • Brown M.
        • MacLean A.
        • Fraser N.W.
        The HSV-1 latency associated transcript (LAT) variants 1704 and 1705 are glycoprotein c negative.
        Virus Res. 1991; 20: 193-200
        • Wu T.-T.
        • Su Y.-H.
        • Block T.M.
        • Taylor J.M.
        Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear.
        J. Virol. 1996; 70: 5962-5967
        • Wu T.-T.
        • Su Y.-H.
        • Block T.M.
        • Taylor J.M.
        Atypical splicing of the latency-associated transcripts of herpes simplex type 1.
        Virology. 1998; 243: 140-149
        • Wu W.
        • Guo Z.
        • Zhang X.
        • Guo L.
        • Liu L.
        • Liao Y.
        • Wang J.
        • Wang L.
        • Li Q.
        A microrna encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genes.
        Sci. China Life Sci. 2013; 56: 373-383
        • Wu Z.
        • Zhu Y.
        • Bisaro D.M.
        • Parris D.S.
        Herpes simplex virus type 1 suppresses RNA-induced gene silencing in mammalian cells.
        J. Virol. 2009; 83: 6652-6663
        • Yang L.
        • Voytek C.
        • Margolis T.
        Immunohistochemical analysis of primary sensory neurons latently infected with herpes simplex virus type 1.
        J. Virol. 2000; 74: 209-217
        • Yeh L.
        • Schaffer P.A.
        A novel class of transcripts expressed with late kinetics in the absence of ICP4 spans the junction between the long and short segments of the herpes simplex virus type 1 genome.
        J. Virol. 1993; 67: 7373-7382
        • Yoshikawa T.
        • Hill J.M.
        • Stanberry L.R.
        • Bourne N.
        • Kurawadwala J.F.
        • Krause P.R.
        The characteristic site-specific reactivation phenotypes of HSV-1 and HSV-2 depend upon the latency-associated transcript region.
        J. Exp. Med. 1996; 184: 659-664
        • Yoshikawa T.
        • Stanberry L.R.
        • Bourne N.
        • Krause P.R.
        Downstream regulatory elements increase acute and latent herpes simplex virus type 2 latency-associated transcript expression but do not influence recurrence phenotype or establishment of latency.
        J. Virol. 1996; 70: 1535-1541
        • Yu X.
        • He S.
        The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways.
        Virol. J. 2016; 13: 1
        • Yun S.J.
        • Jeong P.
        • Kang H.W.
        • Kim Y.-H.
        • Kim E.-A.
        • Yan C.
        • Choi Y.-K.
        • Kim D.
        • Kim J.M.
        • Kim S.-K.
        • et al.
        Urinary micrornas of prostate cancer: virus-encoded HSV1-mirh18 and HSV2-miR-h9-5p could be valuable diagnostic markers.
        Int. Neurourol. J. 2015; 19: 74
        • Yun S.J.
        • Jeong P.
        • Kang H.W.
        • Shinn H.K.
        • Kim Y.-H.
        • Yan C.
        • Choi Y.-K.
        • Kim D.
        • Ryu D.H.
        • Ha Y.-S.
        • et al.
        Increased expression of herpes virus-encoded HSV1-miR-h18 and HSV2-miR-h9-5p in cancer-containing prostate tissue compared to that in benign prostate hyperplasia tissue.
        Int. Neurourol. J. 2016; 20: 122
        • Zabolotny J.M.
        • Krummenacher C.
        • Fraser N.W.
        The herpes simplex virus type 1 2.0-kilobase latency-associated transcript is a stable intron which branches at a guanosine.
        J. Virol. 1997; 71: 4199-4208
        • Zhao H.
        • Zhang C.
        • Hou G.
        • Song J.
        Microrna-h4-5p encoded by HSV-1 latency-associated transcript promotes cell proliferation, invasion and cell cycle progression via p16-mediated pi3k-akt signaling pathway in shsy5y cells.
        Int. J. Clin. Exp. Med. 2015; 8: 7526
        • Zheng X.
        • Marquart M.E.
        • Loustch J.M.
        • Shah P.
        • Sainz B.
        • Ray A.
        • O’Callaghan R.J.
        • Kaufman H.E.
        • Hill J.M.
        Hsv-1 migration in latently infected and naive rabbits after penetrating keratoplasty.
        Investig. Ophthalmol. Vis. Sci. 1999; 40: 2490-2497