Advertisement

Defining nervous system susceptibility during acute and latent herpes simplex virus-1 infection

  • Chandra M. Menendez
    Affiliations
    Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
    Search for articles by this author
  • Daniel J.J. Carr
    Correspondence
    Corresponding author at: Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
    Affiliations
    Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

    Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. USA
    Search for articles by this author

      Highlights

      • In this review, we describe recent findings in an experimental animal model of herpes simplex virus encephalitis that manifests a persistent lytic infection in a unique and important area of the brain, the ependymal region.
      • We describe our results in terms of what is already known experimentally and relate that to the human condition.
      • Central nervous system region-specific susceptibility is reviewed from both animal models and human case reports.
      • Evidence of HSV-1 spontaneous reactivation during the latent stage of infection is also reviewed.

      Abstract

      Herpes simplex viruses are neurotropic human pathogens that infect and establish latency in peripheral sensory neurons of the host. Herpes Simplex Virus-1 (HSV-1) readily infects the facial mucosa that can result in the establishment of a latent infection in the sensory neurons of the trigeminal ganglia (TG). From latency, HSV-1 can reactivate and cause peripheral pathology following anterograde trafficking from sensory neurons. Under rare circumstances, HSV-1 can migrate into the central nervous system (CNS) and cause Herpes Simplex Encephalitis (HSE), a devastating disease of the CNS. It is unclear whether HSE is the result of viral reactivation within the TG, from direct primary infection of the olfactory mucosa, or from other infected CNS neurons. Areas of the brain that are susceptible to HSV-1 during acute infection are ill-defined. Furthermore, whether the CNS is a true reservoir of viral latency following clearance of virus during acute infection is unknown. In this context, this review will identify sites within the brain that are susceptible to acute infection and harbor latent virus. In addition, we will also address findings of HSV-1 lytic gene expression during latency and comment on the pathophysiological consequences HSV-1 infection may have on long-term neurologic performance in animal models and humans.

      Abbreviations:

      CNS (central nervous system), DPI (days post infection), FACS (Fluorescence-activated cell sorting), HSV-1 (herpes simplex virus-1), HSE (Herpes Simplex Encephalitis), NPCs (neural progenitor cells), TG (trigeminal ganglia)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Agelidis A.M.
        • Shukla D.
        Cell entry mechanisms of HSV: what we have learned in recent years.
        Futur. Virol. 2015; 10: 1145-1154
        • Akhtar J.
        • Shukla D.
        Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry.
        FEBS J. 2009; 276: 7228-7236
        • Aldea S.
        • Joly L.M.
        • Roujeau T.
        • Oswald A.M.
        • Devaux B.
        Postoperative herpes simplex virus encephalitis after neurosurgery: case report and review of the literature.
        Clin. Infect. Dis. 2003; 36: e96-e99
        • Armien A.G.
        • Hu S.
        • Little M.R.
        • Robinson N.
        • Lokensgard J.R.
        • Low W.C.
        • et al.
        Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis.
        Brain Pathol. 2010; 20: 738-750
        • Berges B.K.
        • Wolfe J.H.
        • Fraser N.W.
        Transduction of brain by herpes simplex virus vectors.
        Mol. Ther. 2007; 15: 20-29
        • Bertke A.S.
        • Patel A.
        • Imai Y.
        • Apakupakul K.
        • Margolis T.P.
        • Krause P.R.
        Latency-associated transcript (LAT) exon 1 controls herpes simplex virus species-specific phenotypes: reactivation in the guinea pig genital model and neuron subtype-specific latent expression of LAT.
        J. Virol. 2009; 83: 10007-10015
        • Bloom D.C.
        • Giordani N.V.
        • Kwiatkowski D.L.
        Epigenetic regulation of latent HSV-1 gene expression.
        Biochim. Biophys. Acta. 2010; 1799: 246-256
        • Bourgeois M.
        • Vinikoff L.
        • Lellouch-Tubiana A.
        • Sainte-Rose C.
        Reactivation of herpes virus after surgery for epilepsy in a pediatric patient with mesial temporal sclerosis: case report.
        Neurosurgery. 1999; 44 (discussion 5–6): 633-635
        • Braun E.
        • Zimmerman T.
        • Hur T.B.
        • Reinhartz E.
        • Fellig Y.
        • Panet A.
        • et al.
        Neurotropism of herpes simplex virus type 1 in brain organ cultures.
        J. Gen. Virol. 2006; 87: 2827-2837
        • Cantin E.M.
        • Hinton D.R.
        • Chen J.
        • Openshaw H.
        Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1.
        J. Virol. 1995; 69: 4898-4905
        • Carr D.J.
        • Austin B.A.
        • Halford W.P.
        • Stuart P.M.
        Delivery of interferon-gamma by an adenovirus vector blocks herpes simplex virus type 1 reactivation in vitro and in vivo independent of RNase L and double-stranded RNA-dependent protein kinase pathways.
        J. Neuroimmunol. 2009; 206: 39-43
        • Chen S.H.
        • Yao H.W.
        • Huang W.Y.
        • Hsu K.S.
        • Lei H.Y.
        • Shiau A.L.
        • et al.
        Efficient reactivation of latent herpes simplex virus from mouse central nervous system tissues.
        J. Virol. 2006; 80: 12387-12392
        • Chou J.
        • Roizman B.
        The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells.
        Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 3266-3270
        • Chucair-Elliott A.J.
        • Conrady C.
        • Zheng M.
        • Kroll C.M.
        • Lane T.E.
        • Carr D.J.
        Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells.
        Glia. 2014; 62: 1418-1434
        • Cohen M.
        • Braun E.
        • Tsalenchuck Y.
        • Panet A.
        • Steiner I.
        Restrictions that control herpes simplex virus type 1 infection in mouse brain ex vivo.
        J. Gen. Virol. 2011; 92: 2383-2393
        • Conrady C.D.
        • Zheng M.
        • van Rooijen N.
        • Drevets D.A.
        • Royer D.
        • Alleman A.
        • et al.
        Microglia and a functional type I IFN pathway are required to counter HSV-1-driven brain lateral ventricle enlargement and encephalitis.
        J. Immunol. 2013; 190: 2807-2817
        • Cunningham A.L.
        • Diefenbach R.J.
        • Miranda-Saksena M.
        • Bosnjak L.
        • Kim M.
        • Jones C.
        • et al.
        The cycle of human herpes simplex virus infection: virus transport and immune control.
        J. Infect. Dis. 2006; 194: S11-S18
        • Curanovic D.
        • Enquist L.
        Directional transneuronal spread of alpha-herpesvirus infection.
        Futur. Virol. 2009; 4: 591
        • Deatly A.M.
        • Spivack J.G.
        • Lavi E.
        • Fraser N.W.
        RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice.
        Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3204-3208
        • Decman V.
        • Kinchington P.R.
        • Harvey S.A.
        • Hendricks R.L.
        Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression.
        J. Virol. 2005; 79: 10339-10347
        • Diefenbach R.J.
        • Miranda-Saksena M.
        • Douglas M.W.
        • Cunningham A.L.
        Transport and egress of herpes simplex virus in neurons.
        Rev. Med. Virol. 2008; 18: 35-51
        • Enquist L.W.
        • Husak P.J.
        • Banfield B.W.
        • Smith G.A.
        Infection and spread of alphaherpesviruses in the nervous system.
        Adv. Virus Res. 1998; 51: 237-347
        • Farooq A.V.
        • Shukla D.
        Herpes simplex epithelial and stromal keratitis: an epidemiologic update.
        Surv. Ophthalmol. 2012; 57: 448-462
        • Feldman L.T.
        • Ellison A.R.
        • Voytek C.C.
        • Yang L.
        • Krause P.
        • Margolis T.P.
        Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice.
        Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 978-983
        • Fraser N.W.
        • Lawrence W.C.
        • Wroblewska Z.
        • Gilden D.H.
        • Koprowski H.
        Herpes simplex type 1 DNA in human brain tissue.
        Proc. Natl. Acad. Sci. U. S. A. 1981; 78: 6461-6465
        • Gale Jr., M.
        • Katze M.G.
        Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase.
        Pharmacol. Ther. 1998; 78: 29-46
        • Gilden D.H.
        • Mahalingam R.
        • Cohrs R.J.
        • Tyler K.L.
        Herpesvirus infections of the nervous system.
        Nat. Clin. Pract. Neurol. 2007; 3: 82-94
        • Halford W.P.
        • Gebhardt B.M.
        • Carr D.J.
        Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1.
        J. Immunol. 1996; 157: 3542-3549
        • Halford W.P.
        • Gebhardt B.M.
        • Carr D.J.
        Acyclovir blocks cytokine gene expression in trigeminal ganglia latently infected with herpes simplex virus type 1.
        Virology. 1997; 238: 53-63
        • Jennische E.
        • Eriksson C.E.
        • Lange S.
        • Trybala E.
        • Bergstrom T.
        The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection.
        J. Neuro-Oncol. 2015; 21: 129-147
        • Johnson D.C.
        • Baines J.D.
        Herpesviruses remodel host membranes for virus egress.
        Nat. Rev. Microbiol. 2011; 9: 382-394
        • Kastrukoff L.F.
        • Lau A.S.
        • Thomas E.E.
        The effect of mouse strain on herpes simplex virus type 1 (HSV-1) infection of the central nervous system (CNS).
        Herpesviridae. 2012; 3: 4
        • Khanna K.M.
        • Bonneau R.H.
        • Kinchington P.R.
        • Hendricks R.L.
        Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia.
        Immunity. 2003; 18: 593-603
        • Kirby E.D.
        • Kuwahara A.A.
        • Messer R.L.
        • Wyss-Coray T.
        Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF.
        Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 4128-4133
        • Knipe D.M.
        • Cliffe A.
        Chromatin control of herpes simplex virus lytic and latent infection.
        Nat. Rev. Microbiol. 2008; 6: 211-221
        • Kollias C.M.
        • Huneke R.B.
        • Wigdahl B.
        • Jennings S.R.
        Animal models of herpes simplex virus immunity and pathogenesis.
        J. Neuro-Oncol. 2015; 21: 8-23
        • Koyuncu O.O.
        • Hogue I.B.
        • Enquist L.W.
        Virus infections in the nervous system.
        Cell Host Microbe. 2013; 13: 379-393
        • Kramer M.F.
        • Chen S.H.
        • Knipe D.M.
        • Coen D.M.
        Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus.
        J. Virol. 1998; 72: 1177-1185
        • Kramer M.F.
        • Coen D.M.
        Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus.
        J. Virol. 1995; 69: 1389-1399
        • Kriesel J.D.
        • Gebhardt B.M.
        • Hill J.M.
        • Maulden S.A.
        • Hwang I.P.
        • Clinch T.E.
        • et al.
        Anti-interleukin-6 antibodies inhibit herpes simplex virus reactivation.
        J. Infect. Dis. 1997; 175: 821-827
        • Kwon J.W.
        • Cho B.K.
        • Kim E.C.
        • Wang K.C.
        • Kim S.K.
        Herpes simplex encephalitis after craniopharyngioma surgery.
        J. Neurosurg. Pediatr. 2008; 2: 355-358
        • Kruger RFY L.
        Specialized features of the trigeminal nerve and its central connections.
        in: DmMS PJJMD The Cranial Nerves. Springer, Berlin Heidelberg1981: 273-301
        • Lilley C.E.
        • Groutsi F.
        • Han Z.
        • Palmer J.A.
        • Anderson P.N.
        • Latchman D.S.
        • et al.
        Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo.
        J. Virol. 2001; 75: 4343-4356
        • Liu T.
        • Tang Q.
        • Hendricks R.L.
        Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection.
        J. Virol. 1996; 70: 264-271
        • Looker K.J.
        • Magaret A.S.
        • May M.T.
        • Turner K.M.
        • Vickerman P.
        • Gottlieb S.L.
        • et al.
        Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012.
        PLoS One. 2015; 10e0140765
        • Ma J.Z.
        • Russell T.A.
        • Spelman T.
        • Carbone F.R.
        • Tscharke D.C.
        Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response.
        PLoS Pathog. 2014; 10e1004237
        • Maillet S.
        • Naas T.
        • Crepin S.
        • Roque-Afonso A.M.
        • Lafay F.
        • Efstathiou S.
        • et al.
        Herpes simplex virus type 1 latently infected neurons differentially express latency-associated and ICP0 transcripts.
        J. Virol. 2006; 80: 9310-9321
        • McGavern D.B.
        • Kang S.S.
        Illuminating viral infections in the nervous system.
        Nat. Rev. Immunol. 2011; 11: 318-329
        • Menendez C.M.
        • Jinkins J.K.
        • Carr D.J.
        Resident T cells are unable to control herpes simplex virus-1 activity in the brain ependymal region during latency.
        J. Immunol. 2016; 197: 1262-1275
        • Mettenleiter T.C.
        • Klupp B.G.
        • Granzow H.
        Herpesvirus assembly: an update.
        Virus Res. 2009; 143: 222-234
        • Mingo R.M.
        • Han J.
        • Newcomb W.W.
        • Brown J.C.
        Replication of herpes simplex virus: egress of progeny virus at specialized cell membrane sites.
        J. Virol. 2012; 86: 7084-7097
        • Mori I.
        • Yokochi T.
        • Koide N.
        • Sugiyama T.
        • Yoshida T.
        • Kimura Y.
        • et al.
        PCR search for the herpes simplex virus type 1 genome in brain sections of patients with familial Alzheimer's disease.
        J. Clin. Microbiol. 2004; 42: 936-937
        • Murphy E.
        • Vanicek J.
        • Robins H.
        • Shenk T.
        • Levine A.J.
        Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 5453-5458
        • Noisakran S.
        • Halford W.P.
        • Veress L.
        • Carr D.J.
        Role of the hypothalamic pituitary adrenal axis and IL-6 in stress-induced reactivation of latent herpes simplex virus type 1.
        J. Immunol. 1998; 160: 5441-5447
        • Ochsner F.
        Contamination of a glioma by the herpes virus.
        Schweiz. Arch. Neurol. Neurochir. Psychiatr. 1981; 129: 19-30
        • Orvedahl A.
        • Alexander D.
        • Talloczy Z.
        • Sun Q.
        • Wei Y.
        • Zhang W.
        • et al.
        HSV-1 ICP34.5 confers neurovirulence by targeting the beclin 1 autophagy protein.
        Cell Host Microbe. 2007; 1: 23-35
        • Peng W.
        • Henderson G.
        • Inman M.
        • BenMohamed L.
        • Perng G.C.
        • Wechsler S.L.
        • et al.
        The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice.
        J. Virol. 2005; 79: 6162-6171
        • Perng G.C.
        • Jones C.
        • Ciacci-Zanella J.
        • Stone M.
        • Henderson G.
        • Yukht A.
        • et al.
        Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript.
        Science. 2000; 287: 1500-1503
        • Perry J.D.
        • Girkin C.A.
        • Miller N.R.
        • Kerr D.A.
        Herpes simplex encephalitis and bilateral acute retinal necrosis syndrome after craniotomy.
        Am J. Ophthalmol. 1998; 126: 456-460
        • Rampling R.
        • Cruickshank G.
        • Papanastassiou V.
        • Nicoll J.
        • Hadley D.
        • Brennan D.
        • et al.
        Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma.
        Gene Ther. 2000; 7: 859-866
        • Richart S.M.
        • Simpson S.A.
        • Krummenacher C.
        • Whitbeck J.C.
        • Pizer L.I.
        • Cohen G.H.
        • et al.
        Entry of herpes simplex virus type 1 into primary sensory neurons in vitro is mediated by Nectin-1/HveC.
        J. Virol. 2003; 77: 3307-3311
        • Rotschafer J.H.
        • Hu S.
        • Little M.
        • Erickson M.
        • Low W.C.
        • Cheeran M.C.
        Modulation of neural stem/progenitor cell proliferation during experimental Herpes Simplex encephalitis is mediated by differential FGF-2 expression in the adult brain.
        Neurobiol. Dis. 2013; 58: 144-155
        • Rozenberg F.
        Acute viral encephalitis.
        Handb. Clin. Neurol. 2013; 112: 1171-1181
        • Rozenberg F.
        • Deback C.
        • Agut H.
        Herpes simplex encephalitis: from virus to therapy.
        Infect. Disord. Drug Targets. 2011; 11: 235-250
        • Russell T.A.
        • Tscharke D.C.
        Lytic promoters express protein during herpes simplex virus latency.
        PLoS Pathog. 2016; 12e1005729
        • Saldanha J.
        • Sutton R.N.
        • Gannicliffe A.
        • Farragher B.
        • Itzhaki R.F.
        Detection of HSV1 DNA by in situ hybridisation in human brain after immunosuppression.
        J. Neurol. Neurosurg. Psychiatry. 1986; 49: 613-619
        • Sequiera L.W.
        • Jennings L.C.
        • Carrasco L.H.
        • Lord M.A.
        • Curry A.
        • Sutton R.N.
        Detection of herpes-simplex viral genome in brain tissue.
        Lancet. 1979; 2: 609-612
        • Seri B.
        • Herrera D.G.
        • Gritti A.
        • Ferron S.
        • Collado L.
        • Vescovi A.
        • et al.
        Composition and organization of the SCZ: a large germinal layer containing neural stem cells in the adult mammalian brain.
        Cereb. Cortex. 2006; 16: i103-i111
        • Sheleg S.V.
        • Nedzved M.K.
        • Nedzved A.M.
        • Kulichkovskaya I.V.
        Contamination of glioblastoma multiforme with type 1 herpes simplex virus. Case illustration.
        J. Neurosurg. 2001; 95: 721
        • Skelly M.J.
        • Burger A.A.
        • Adekola O.
        Herpes simplex virus-1 encephalitis: a review of current disease management with three case reports.
        Antivir. Chem. Chemother. 2013; 23: 13-18
        • Smith G.
        Herpesvirus transport to the nervous system and back again.
        Annu. Rev. Microbiol. 2012; 66: 153-176
        • Spear P.G.
        • Longnecker R.
        Herpesvirus entry: an update.
        J. Virol. 2003; 77: 10179-10185
        • Speck S.H.
        • Ganem D.
        Viral latency and its regulation: lessons from the gamma-herpesviruses.
        Cell Host Microbe. 2010; 8: 100-115
        • Spuler A.
        • Blaszyk H.
        • Parisi J.E.
        • Davis D.H.
        Herpes simplex encephalitis after brain surgery: case report and review of the literature.
        J. Neurol. Neurosurg. Psychiatry. 1999; 67: 239-242
        • Stevens J.G.
        • Wagner E.K.
        • Devi-Rao G.B.
        • Cook M.L.
        • Feldman L.T.
        RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons.
        Science. 1987; 235: 1056-1059
        • Tanaka M.
        • Kato A.
        • Satoh Y.
        • Ide T.
        • Sagou K.
        • Kimura K.
        • et al.
        Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence.
        J. Virol. 2012; 86: 5264-5277
        • Ted L.
        • Tewfik M.
        • Arlen D.
        • Meyers M.D.
        Meyers Arlen D. Trigeminal Nerve Anatomy, Gross Anatomy. Medscape, Online, 2015 (MBA. (M, MBA))
        • Umbach J.L.
        • Kramer M.F.
        • Jurak I.
        • Karnowski H.W.
        • Coen D.M.
        • Cullen B.R.
        MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs.
        Nature. 2008; 454: 780-783
        • Valyi-Nagy T.
        • Olson S.J.
        • Valyi-Nagy K.
        • Montine T.J.
        • Dermody T.S.
        Herpes simplex virus type 1 latency in the murine nervous system is associated with oxidative damage to neurons.
        Virology. 2000; 278: 309-321
        • van Groen T.
        • Miettinen P.
        • Kadish I.
        The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation.
        Hippocampus. 2003; 13: 133-149
        • van Velzen M.
        • Jing L.
        • Osterhaus A.D.
        • Sette A.
        • Koelle D.M.
        • Verjans G.M.
        Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia.
        PLoS Pathog. 2013; 9e1003547
        • Verpooten D.
        • Ma Y.
        • Hou S.
        • Yan Z.
        • He B.
        Control of TANK-binding kinase 1-mediated signaling by the gamma(1)34.5 protein of herpes simplex virus 1.
        J. Biol. Chem. 2009; 284: 1097-1105
        • Wallace M.E.
        • Keating R.
        • Heath W.R.
        • Carbone F.R.
        The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant.
        J. Virol. 1999; 73: 7619-7626
        • Webb S.J.
        • Eglin R.P.
        • Reading M.
        • Esiri M.M.
        Experimental murine herpes simplex encephalitis: immunohistochemical detection of virus antigens.
        Neuropathol. Appl. Neurobiol. 1989; 15: 165-174
        • Wherry E.J.
        • Kurachi M.
        Molecular and cellular insights into T cell exhaustion.
        Nat. Rev. Immunol. 2015; 15: 486-499
        • Wilcox D.R.
        • Longnecker R.
        The herpes simplex virus neurovirulence factor gamma34.5: revealing virus-host interactions.
        PLoS Pathog. 2016; 12e1005449
        • Yao H.W.
        • Ling P.
        • Chen S.H.
        • Tung Y.Y.
        • Chen S.H.
        Factors affecting herpes simplex virus reactivation from the explanted mouse brain.
        Virology. 2012; 433: 116-123
        • Yao H.W.
        • Ling P.
        • Tung Y.Y.
        • Hsu S.M.
        • Chen S.H.
        In vivo reactivation of latent herpes simplex virus 1 in mice can occur in the brain before occurring in the trigeminal ganglion.
        J. Virol. 2014; 88: 11264-11270