Advertisement
Research Article| Volume 300, P1-8, November 15, 2016

Download started.

Ok

CD14+CD16++ monocytes are increased in patients with NMO and are selectively suppressed by glucocorticoids therapy

Published:September 29, 2016DOI:https://doi.org/10.1016/j.jneuroim.2016.09.011

      Highlights

      • The level of nonclassical monocytes was significantly increased and selectively suppressed by GC in patients with NMO.
      • Circulating nonclassical monocytes, the levels of IL-1β and TNF-α are all correlated with NMO disability severity.
      • Nonclassical monocytes may be a potential disease biomarker and a therapeutic target in the active phase of NMO.

      Abstract

      The pathophysiologic significance of the CD16+ monocyte subset has been demonstrated by its expansion in various autoimmune disorders. To date, the characteristics and roles of monocyte subpopulations in patients with neuromyelitis optica (NMO) have been poorly defined. We measured the percentages of the monocyte subsets in the peripheral blood, the levels of IL-1β and TNF-α mRNA in monocyte subsets and the concentrations of IL-1β and TNF-α in plasma and CSF from NMO patients. Our results showed that nonclassical monocytes were up-regulated in NMO patients and significantly elevated IL-1β and TNF-α expression was detected in it. In addition the increased nonclassical monocytes could be selectively suppressed by GC in patients with NMO.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ancuta P.
        • Rao R.
        • Moses A.
        • Mehle A.
        • Shaw S.K.
        • Luscinskas F.W.
        • Gabuzda D.
        Fractalkine preferentially mediates arrest and migration of CD16+ monocytes.
        J. Exp. Med. 2003; 197: 1701-1707
        • Bar-Or A.
        • Nuttall R.K.
        • Duddy M.
        • Alter A.
        • Kim H.J.
        • Ifergan I.
        • Pennington C.J.
        • Bourgoin P.
        • Edwards D.R.
        • Yong V.W.
        Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis.
        Brain. 2003; 126: 2738-2749
        • Beutler B.
        • Krochin N.
        • Milsark I.W.
        • Luedke C.
        • Cerami A.
        Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance.
        Science. 1986; 232: 977-980
        • Blotta M.H.
        • DeKruyff R.H.
        • Umetsu D.T.
        Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes.
        J. Immunol. 1997; 158: 5589-5595
        • Burdo T.H.
        • Soulas C.
        • Orzechowski K.
        • Button J.
        • Krishnan A.
        • Sugimoto C.
        • Alvarez X.
        • Kuroda M.J.
        • Williams K.C.
        Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma.
        PLoS Pathog. 2010; 6e1000842
        • Chuluundorj D.
        • Harding S.A.
        • Abernethy D.
        • La Flamme A.C.
        Expansion and preferential activation of the CD14(+)CD16(+) monocyte subset during multiple sclerosis.
        Immunol. Cell Biol. 2014; 92: 509-517
        • Cros J.
        • Cagnard N.
        • Woollard K.
        • Patey N.
        • Zhang S.Y.
        • Senechal B.
        • Puel A.
        • Biswas S.K.
        • Moshous D.
        • Picard C.
        • Jais J.P.
        • D'Cruz D.
        • Casanova J.L.
        • Trouillet C.
        • Geissmann F.
        Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors.
        Immunity. 2010; 33: 375-386
        • Cui Y.W.
        • Kawano Y.
        • Shi N.
        • Masaki K.
        • Isobe N.
        • Yonekawa T.
        • Matsushita T.
        • Tateishi T.
        • Yamasaki R.
        • Murai H.
        • Kira J.
        Alterations in chemokine receptor expressions on peripheral blood monocytes in multiple sclerosis and neuromyelitis optica.
        Clin. Exp. Neuroimmunol. 2013; 4: 201-205
        • Dayyani F.
        • Belge K.U.
        • Frankenberger M.
        • Mack M.
        • Berki T.
        • Ziegler-Heitbrock L.
        Mechanism of glucocorticoid-induced depletion of human CD14+CD16+ monocytes.
        J. Leukoc. Biol. 2003; 74: 33-39
        • Elenkov I.J.
        • Chrousos G.P.
        Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease.
        Trends Endocrinol. Metab. 1999; 10: 359-368
        • Fingerle G.
        • Pforte A.
        • Passlick B.
        • Blumenstein M.
        • Strobel M.
        • Ziegler-Heitbrock H.W.
        The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients.
        Blood. 1993; 82: 3170-3176
        • Fingerle-Rowson G.
        • Angstwurm M.
        • Andreesen R.
        • Ziegler-Heitbrock H.W.
        Selective depletion of CD14+ CD16+ monocytes by glucocorticoid therapy.
        Clin. Exp. Immunol. 1998; 112: 501-506
        • Frankenberger M.
        • Sternsdorf T.
        • Pechumer H.
        • Pforte A.
        • Ziegler-Heitbrock H.W.
        Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis.
        Blood. 1996; 87: 373-377
        • Geissmann F.
        • Jung S.
        • Littman D.R.
        Blood monocytes consist of two principal subsets with distinct migratory properties.
        Immunity. 2003; 19: 71-82
        • Grip O.
        • Bredberg A.
        • Lindgren S.
        • Henriksson G.
        Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn's disease.
        Inflamm. Bowel Dis. 2007; 13: 566-572
        • Kitic M.
        • Hochmeister S.
        • Wimmer I.
        • Bauer J.
        • Misu T.
        • Mader S.
        • Reindl M.
        • Fujihara K.
        • Lassmann H.
        • Bradl M.
        Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats.
        Acta Neuropathol. Commun. 2013; 1: 5
        • Kuroda H.
        • Fujihara K.
        • Takano R.
        • Takai Y.
        • Takahashi T.
        • Misu T.
        • Nakashima I.
        • Sato S.
        • Itoyama Y.
        • Aoki M.
        Increase of complement fragment C5a in cerebrospinal fluid during exacerbation of neuromyelitis optica.
        J. Neuroimmunol. 2013; 254: 178-182
        • Lee S.W.
        • Tsou A.P.
        • Chan H.
        • Thomas J.
        • Petrie K.
        • Eugui E.M.
        • Allison A.C.
        Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of interleukin 1 beta mRNA.
        Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 1204-1208
        • Lennon V.A.
        • Wingerchuk D.M.
        • Kryzer T.J.
        • Pittock S.J.
        • Lucchinetti C.F.
        • Fujihara K.
        • Nakashima I.
        • Weinshenker B.G.
        A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
        Lancet. 2004; 364: 2106-2112
        • Levy M.
        • Wildemann B.
        • Jarius S.
        • Orellano B.
        • Sasidharan S.
        • Weber M.S.
        • Stuve O.
        Immunopathogenesis of neuromyelitis optica.
        Adv. Immunol. 2014; 121: 213-242
        • Lucchinetti C.F.
        • Mandler R.N.
        • McGavern D.
        • Bruck W.
        • Gleich G.
        • Ransohoff R.M.
        • Trebst C.
        • Weinshenker B.
        • Wingerchuk D.
        • Parisi J.E.
        • Lassmann H.
        A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica.
        Brain. 2002; 125: 1450-1461
        • Mukherjee R.
        • Kanti B.P.
        • Kumar T.P.
        • Tripathy R.
        • Kumar D.B.
        • Ravindran B.
        Non-classical monocytes display inflammatory features: validation in sepsis and systemic Lupus erythematous.
        Sci. Rep. 2015; 5: 13886
        • Passlick B.
        • Flieger D.
        • Ziegler-Heitbrock H.W.
        Identification and characterization of a novel monocyte subpopulation in human peripheral blood.
        Blood. 1989; 74: 2527-2534
        • Piemonti L.
        • Monti P.
        • Allavena P.
        • Sironi M.
        • Soldini L.
        • Leone B.E.
        • Socci C.
        • Di Carlo V.
        Glucocorticoids affect human dendritic cell differentiation and maturation.
        J. Immunol. 1999; 162: 6473-6481
        • Ramirez F.
        • Fowell D.J.
        • Puklavec M.
        • Simmonds S.
        • Mason D.
        Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro.
        J. Immunol. 1996; 156: 2406-2412
        • Rivier A.
        • Pene J.
        • Rabesandratana H.
        • Chanez P.
        • Bousquet J.
        • Campbell A.M.
        Blood monocytes of untreated asthmatics exhibit some features of tissue macrophages.
        Clin. Exp. Immunol. 1995; 100: 314-318
        • Rossol M.
        • Kraus S.
        • Pierer M.
        • Baerwald C.
        • Wagner U.
        The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population.
        Arthritis Rheum. 2012; 64: 671-677
        • Uzawa A.
        • Mori M.
        • Arai K.
        • Sato Y.
        • Hayakawa S.
        • Masuda S.
        • Taniguchi J.
        • Kuwabara S.
        Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6.
        Mult. Scler. 2010; 16: 1443-1452
        • Vanham G.
        • Edmonds K.
        • Qing L.
        • Hom D.
        • Toossi Z.
        • Jones B.
        • Daley C.L.
        • Huebner B.
        • Kestens L.
        • Gigase P.
        • Ellner J.J.
        Generalized immune activation in pulmonary tuberculosis: co-activation with HIV infection.
        Clin. Exp. Immunol. 1996; 103: 30-34
        • Wang K.C.
        • Lee C.L.
        • Chen S.Y.
        • Chen J.C.
        • Yang C.W.
        • Chen S.J.
        • Tsai C.P.
        Distinct serum cytokine profiles in neuromyelitis optica and multiple sclerosis.
        J. Interf. Cytokine Res. 2013; 33: 58-64
        • Weber C.
        • Belge K.U.
        • von Hundelshausen P.
        • Draude G.
        • Steppich B.
        • Mack M.
        • Frankenberger M.
        • Weber K.S.
        • Ziegler-Heitbrock H.W.
        Differential chemokine receptor expression and function in human monocyte subpopulations.
        J. Leukoc. Biol. 2000; 67: 699-704
        • Wong K.L.
        • Yeap W.H.
        • Tai J.J.
        • Ong S.M.
        • Dang T.M.
        • Wong S.C.
        The three human monocyte subsets: implications for health and disease.
        Immunol. Res. 2012; 53: 41-57
        • Zawada A.M.
        • Rogacev K.S.
        • Rotter B.
        • Winter P.
        • Marell R.R.
        • Fliser D.
        • Heine G.H.
        SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset.
        Blood. 2011; 118: e50-e61
        • Zeka B.
        • Hastermann M.
        • Hochmeister S.
        • Kogl N.
        • Kaufmann N.
        • Schanda K.
        • Mader S.
        • Misu T.
        • Rommer P.
        • Fujihara K.
        • Illes Z.
        • Leutmezer F.
        • Sato D.K.
        • Nakashima I.
        • Reindl M.
        • Lassmann H.
        • Bradl M.
        Highly encephalitogenic aquaporin 4-specific T cells and NMO-IgG jointly orchestrate lesion location and tissue damage in the CNS.
        Acta Neuropathol. 2015; 130: 783-798
        • Ziegler-Heitbrock H.W.
        Definition of human blood monocytes.
        J. Leukoc. Biol. 2000; 67: 603-606
        • Ziegler-Heitbrock L.
        The CD14+ CD16+ blood monocytes: their role in infection and inflammation.
        J. Leukoc. Biol. 2007; 81: 584-592
        • Ziegler-Heitbrock H.W.
        • Strobel M.
        • Kieper D.
        • Fingerle G.
        • Schlunck T.
        • Petersmann I.
        • Ellwart J.
        • Blumenstein M.
        • Haas J.G.
        Differential expression of cytokines in human blood monocyte subpopulations.
        Blood. 1992; 79: 503-511
        • Ziegler-Heitbrock H.W.
        • Fingerle G.
        • Strobel M.
        • Schraut W.
        • Stelter F.
        • Schutt C.
        • Passlick B.
        • Pforte A.
        The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages.
        Eur. J. Immunol. 1993; 23: 2053-2058
        • Ziegler-Heitbrock L.
        • Ancuta P.
        • Crowe S.
        • Dalod M.
        • Grau V.
        • Hart D.N.
        • Leenen P.J.
        • Liu Y.J.
        • MacPherson G.
        • Randolph G.J.
        • Scherberich J.
        • Schmitz J.
        • Shortman K.
        • Sozzani S.
        • Strobl H.
        • Zembala M.
        • Austyn J.M.
        • Lutz M.B.
        Nomenclature of monocytes and dendritic cells in blood.
        Blood. 2010; 116: e74-e80