Advertisement

Suppression of MOG- and PLP-induced experimental autoimmune encephalomyelitis using a novel multivalent bifunctional peptide inhibitor

  • Ahmed H. Badawi
    Affiliations
    Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, United States
    Search for articles by this author
  • Teruna J. Siahaan
    Correspondence
    Corresponding author at: Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, United States Tel.: +1 785 864 7327; fax: +1 785 864 5736.
    Affiliations
    Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, United States
    Search for articles by this author

      Highlights

      • A novel peptide composed of MOG and an adhesion peptide was tested in EAE.
      • Another peptide composed of 2 myelin antigens and an adhesion peptide was tested.
      • MOG-BPI suppressed disease significantly when tested in MOG-induced EAE.
      • MVPMOG/PLP was able to suppress both MOG- and PLP-induced EAE.

      Abstract

      Previously, bifunctional peptide inhibitors (BPI) with a single antigenic peptide have been shown to suppress experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. In this study, a multivalent BPI (MVBMOG/PLP) with two antigenic peptides derived from myelin oligodendrocyte glycoprotein (MOG38–50) and myelin proteolipid protein (PLP139–151) was evaluated in suppressing MOG38–50- and PLP139–151-induced EAE. MVBMOG/PLP significantly suppressed both models of EAE even when there was some evidence of epitope spreading in the MOG38–50-induced EAE model. In addition, MVBMOG/PLP was found to be more effective than PLP-BPI and MOG-BPI in suppressing MOG38–50-induced EAE. Thus, the development of MVB molecules with broader antigenic targets can lead to suppression of epitope spreading in EAE.

      Abbreviations:

      EAE (experimental autoimmune encephalomyelitis), BPI (bifunctional peptide inhibitor), PLP (proteolipid protein), MOG (myelin oligodendrocyte glycoprotein), MVB (multivalent BPI)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbott N.J.
        • Ronnback L.
        • Hansson E.
        Astrocyte–endothelial interactions at the blood–brain barrier.
        Nat. Rev. Neurosci. 2006; 7: 41-53
        • Badawi A.H.
        • Kiptoo P.
        • Wang W.T.
        • Choi I.Y.
        • Lee P.
        • Vines C.M.
        • et al.
        Suppression of EAE and prevention of blood–brain barrier breakdown after vaccination with novel bifunctional peptide inhibitor.
        Neuropharmacology. 2012; 62: 1874-1881
        • Bielekova B.
        • Muraro P.A.
        • Golestaneh L.
        • Pascal J.
        • McFarland H.F.
        • Martin R.
        Preferential expansion of autoreactive T lymphocytes from the memory T-cell pool by IL-7.
        J. Neuroimmunol. 1999; 100: 115-123
        • Dhib-Jalbut S.
        Glatiramer acetate (Copaxone) therapy for multiple sclerosis.
        Pharmacol. Ther. 2003; 98: 245-255
        • Goebels N.
        • Hofstetter H.
        • Schmidt S.
        • Brunner C.
        • Wekerle H.
        • Hohlfeld R.
        Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence.
        Brain. 2000; 123: 508-518
        • Grakoui A.
        • Bromley S.K.
        • Sumen C.
        • Davis M.M.
        • Shaw A.S.
        • Allen P.M.
        • et al.
        The immunological synapse: a molecular machine controlling T cell activation.
        Science. 1999; 285: 221-227
        • Kebir H.
        • Ifergan I.
        • Alvarez J.I.
        • Bernard M.
        • Poirier J.
        • Arbour N.
        • et al.
        Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis.
        Ann. Neurol. 2009; 66: 390-402
        • Kiptoo P.
        • Buyuktimkin B.
        • Badawi A.H.
        • Stewart J.
        • Ridwan R.
        • Siahaan T.J.
        Controlling immune response and demyelination using highly potent bifunctional peptide inhibitors in the suppression of experimental autoimmune encephalomyelitis.
        Clin. Exp. Immunol. 2013; 172: 23-36
        • Kobayashi N.
        • Kobayashi H.
        • Gu L.
        • Malefyt T.
        • Siahaan T.J.
        Antigen-specific suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor.
        J. Pharmacol. Exp. Ther. 2007; 322: 879-886
        • Kobayashi N.
        • Kiptoo P.
        • Kobayashi H.
        • Ridwan R.
        • Brocke S.
        • Siahaan T.J.
        Prophylactic and therapeutic suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor.
        Clin. Immunol. 2008; 129: 69-79
        • Lassmann H.
        Classification of demyelinating diseases at the interface between etiology and pathogenesis.
        Curr. Opin. Neurol. 2001; 14: 253-258
        • Lee K.H.
        • Holdorf A.D.
        • Dustin M.L.
        • Chan A.C.
        • Allen P.M.
        • Shaw A.S.
        T cell receptor signaling precedes immunological synapse formation.
        Science. 2002; 295: 1539-1542
        • Lehmann P.V.
        • Forsthuber T.
        • Miller A.
        • Sercarz E.E.
        Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen.
        Nature. 1992; 358: 155-157
        • Lehmann P.V.
        • Sercarz E.E.
        • Forsthuber T.
        • Dayan C.M.
        • Gammon G.
        Determinant spreading and the dynamics of the autoimmune T-cell repertoire.
        Immunol. Today. 1993; 14: 203-208
        • Lin W.
        • Kemper A.
        • Dupree J.L.
        • Harding H.P.
        • Ron D.
        • Popko B.
        Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress.
        Brain. 2006; 129: 1306-1318
        • Maimone D.
        • Guazzi G.C.
        • Annunziata P.
        IL-6 detection in multiple sclerosis brain.
        J. Neurol. Sci. 1997; 146: 59-65
        • Manikwar P.
        • Kiptoo P.
        • Badawi A.H.
        • Buyuktimkin B.
        • Siahaan T.J.
        Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases.
        Med. Res. Rev. 2012; 32: 727-764
        • Muraro P.A.
        • Wandinger K.P.
        • Bielekova B.
        • Gran B.
        • Marques A.
        • Utz U.
        • et al.
        Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders.
        Brain. 2003; 126: 20-31
        • Murray J.S.
        • Oney S.
        • Page J.E.
        • Kratochvil-Stava A.
        • Hu Y.
        • Makagiansar I.T.
        • et al.
        Suppression of type 1 diabetes in NOD mice by bifunctional peptide inhibitor: modulation of the immunological synapse formation.
        Chem. Biol. Drug Des. 2007; 70: 227-236
        • Neuhaus O.
        • Farina C.
        • Wekerle H.
        • Hohlfeld R.
        Mechanisms of action of glatiramer acetate in multiple sclerosis.
        Neurology. 2001; 56: 702-708
        • Perry L.L.
        • Barzaga-Gilbert E.
        • Trotter J.L.
        T cell sensitization to proteolipid protein in myelin basic protein-induced relapsing experimental allergic encephalomyelitis.
        J. Neuroimmunol. 1991; 33: 7-15
        • Prendergast C.T.
        • Anderton S.M.
        Immune cell entry to central nervous system—current understanding and prospective therapeutic targets.
        Endocr. Metab. Immune Disord. Drug Targets. 2009; 9: 315-327
        • Ridwan R.
        • Kiptoo P.
        • Kobayashi N.
        • Weir S.
        • Hughes M.
        • Williams T.
        • et al.
        Antigen-specific suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor: structure optimization and pharmacokinetics.
        J. Pharmacol. Exp. Ther. 2010; 332: 1136-1145
        • Serada S.
        • Fujimoto M.
        • Mihara M.
        • Koike N.
        • Ohsugi Y.
        • Nomura S.
        • et al.
        IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 9041-9046
        • Smith C.E.
        • Miller S.D.
        Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities.
        J. Autoimmun. 2006; 27: 218-231
        • Tseng S.Y.
        • Dustin M.L.
        T-cell activation: a multidimensional signaling network.
        Curr. Opin. Cell Biol. 2002; 14: 575-580
        • Tuohy V.K.
        • Kinkel R.P.
        Epitope spreading: a mechanism for progression of autoimmune disease.
        Arch. Immunol. Ther. Exp. (Warsz.). 2000; 48: 347-351
        • Tuohy V.K.
        • Yu M.
        • Weinstock-Guttman B.
        • Kinkel R.P.
        Diversity and plasticity of self recognition during the development of multiple sclerosis.
        J. Clin. Invest. 1997; 99: 1682-1690
        • Tuohy V.K.
        • Yu M.
        • Yin L.
        • Kawczak J.A.
        • Kinkel P.R.
        Regression and spreading of self-recognition during the development of autoimmune demyelinating disease.
        J. Autoimmun. 1999; 13: 11-20
        • Tuohy V.K.
        • Yu M.
        • Yin L.
        • Kawczak J.A.
        • Kinkel R.P.
        Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis.
        J. Exp. Med. 1999; 189: 1033-1042
        • van der Merwe P.A.
        Formation and function of the immunological synapse.
        Curr. Opin. Immunol. 2002; 14: 293-298
        • Vanderlugt C.J.
        • Miller S.D.
        Epitope spreading.
        Curr. Opin. Immunol. 1996; 8: 831-836
        • Voskuhl R.R.
        • Martin R.
        • Bergman C.
        • Dalal M.
        • Ruddle N.H.
        • McFarland H.F.
        T helper 1 (Th1) functional phenotype of human myelin basic protein-specific T lymphocytes.
        Autoimmunity. 1993; 15: 137-143
        • Youssef S.
        • Stuve O.
        • Patarroyo J.C.
        • Ruiz P.J.
        • Radosevich J.L.
        • Hur E.M.
        • et al.
        The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease.
        Nature. 2002; 420: 78-84
        • Zhang J.
        • Markovic-Plese S.
        • Lacet B.
        • Raus J.
        • Weiner H.L.
        • Hafler D.A.
        Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis.
        J. Exp. Med. 1994; 179: 973-984
        • Zhao H.
        • Kiptoo P.
        • Williams T.D.
        • Siahaan T.J.
        • Topp E.M.
        Immune response to controlled release of immunomodulating peptides in a murine experimental autoimmune encephalomyelitis (EAE) model.
        J. Control. Release. 2010; 141: 145-152