Research Article| Volume 238, ISSUE 1-2, P73-80, September 15, 2011

Download started.


Children with autism spectrum disorders (ASD) who exhibit chronic gastrointestinal (GI) symptoms and marked fluctuation of behavioral symptoms exhibit distinct innate immune abnormalities and transcriptional profiles of peripheral blood (PB) monocytes

  • Harumi Jyonouchi
    Corresponding author at: Division of Allergy/Immunology and Infection Diseases, Department of Pediatrics, UMDNJ-NJMS, 185 South Orange Ave. F507A, MSB, Newark, NJ 07101-1709, USA. Tel.: +1 973 972 1414; fax: +1 973 972 6443.
    Division of Allergy/Immunology and Infection Diseases, Department of Pediatrics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School (NJMS), 185 South Orange Ave, Newark, NJ, United States
    Search for articles by this author
  • Lee Geng
    Division of Allergy/Immunology and Infection Diseases, Department of Pediatrics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School (NJMS), 185 South Orange Ave, Newark, NJ, United States
    Search for articles by this author
  • Deanna L. Streck
    Institute of Genomic Medicine, Department of Pediatrics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School (NJMS), 185 South Orange Ave, Newark, NJ, United States
    Search for articles by this author
  • Gokce A. Toruner
    Institute of Genomic Medicine, Department of Pediatrics, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School (NJMS), 185 South Orange Ave, Newark, NJ, United States
    Search for articles by this author


      Innate/adaptive immune responses and transcript profiles of peripheral blood monocytes were studied in ASD children who exhibit fluctuating behavioral symptoms following infection and other immune insults (ASD/Inf, N=30). The ASD/Inf children with persistent gastrointestinal symptoms (ASD/Inf+GI, N=19), revealed less production of proinflammatory and counter-regulatory cytokines with stimuli of innate immunity and marked changes in transcript profiles of monocytes as compared to ASD/no-Inf (N=28) and normal (N=26) controls. This included a 4–5 fold up-regulation of chemokines (CCL2 and CCL7), consistent with the production of more CCL2 by ASD/Inf+GI cells. These results indicate dysregulated innate immune defense in the ASD/Inf+GI children, rendering them more vulnerable to common microbial infection/dysbiosis and possibly subsequent behavioral changes.


      α-LA (α-lactoalbumin), β-LG (β-lactoglobulin), AC (allergic conjunctivitis), AR (allergic rhinitis), ASD (autism spectrum disorder), ASD-IS (ASD-immune subtype), BMDM cells (bone marrow derived microglial cells), CNS (central nervous system), CNV (copy number variation), CRS (chronic rhinosinusitis), CVID (common variable immunodeficiency), FA (food allergy), FP (food protein), FPIES (food protein induced enterocolitis syndrome), GI (gastrointestinal), GWAS (genome wide association studies), IBD (inflammatory bowel disease), IL (interleukin), IVIG (intravenous immunoglobulin), MS (multiple sclerosis), NJMS (New Jersey Medical School), PB (peripheral blood), PBMCs (peripheral blood mononuclear cells), ROM (recurrent otitis media), SD (standard deviation), SNP (single nucleotide polymorphism), SPAD (specific polysaccharide antibody deficiency), TLR (toll-like receptor), TNF (tumor necrosis factor), sTNFRII (soluble TNF-receptor II), TGF-β (transforming growth factor-β), UMDNJ (University of Medicine and Dentistry of New Jersey)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Aleksic B.
        • Kushima I.
        • Ito Y.
        • Nakamura Y.
        • Ujike H.
        • Suzuki M.
        • Inada T.
        • Hashimoto R.
        • Takeda M.
        • Iwata N.
        • Ozaki N.
        Genetic association study of KREMEN1 and DKK1 and schizophrenia in a Japanese population.
        Schizophr. Res. 2010; 118: 113-117
        • Ashwood P.
        • Krakowiak P.
        • Hertz-Picciotto I.
        • Hansen R.
        • Pessah I.N.
        • Van de Water J.
        Altered T cell responses in children with autism.
        Brain Behav. Immun. 2011; 5: 840-849
        • Ashwood P.
        • Krakowiak P.
        • Hertz-Picciotto I.
        • Hansen R.
        • Pessah I.N.
        • Van de Water J.
        Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders.
        J. Neuroimmunol. 2011; 232: 196-199
        • Ashwood P.
        • Wakefield A.J.
        Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms.
        J. Neuroimmunol. 2006; 173: 126-134
        • Baharnoori M.
        • Bhardwaj S.K.
        • Srivastava L.K.
        Neonatal behavioral changes in rats with gestational exposure to lipopolysaccharide: a prenatal infection model for developmental neuropsychiatric disorders.
        Schizophr. Bull. 2010; ([Epub ahead of print])
        • Bale T.L.
        • Baram T.Z.
        • Brown A.S.
        • Goldstein J.M.
        • Insel T.R.
        • McCarthy M.M.
        • Nemeroff C.B.
        • Reyes T.M.
        • Simerly R.B.
        • Susser E.S.
        • Nestler E.J.
        Early life programming and neurodevelopmental disorders.
        Biol. Psychiatry. 2010; 68: 314-319
        • Bradford M.
        • Law M.H.
        • Megson I.L.
        • Wei J.
        The functional significance of the TGM2 gene in schizophrenia: a correlation of SNPs and circulating IL-2 levels.
        J. Neuroimmunol. 2011; 232: 5-7
        • Bucan M.
        • Abrahams B.S.
        • Wang K.
        • Glessner J.T.
        • Herman E.I.
        • Sonnenblick L.I.
        • Alvarez Retuerto A.I.
        • Imielinski M.
        • Hadley D.
        • Bradfield J.P.
        • Kim C.
        • Gidaya N.B.
        • Lindquist I.
        • Hutman T.
        • Sigman M.
        • Kustanovich V.
        • Lajonchere C.M.
        • Singleton A.
        • Kim J.
        • Wassink T.H.
        • McMahon W.M.
        • Owley T.
        • Sweeney J.A.
        • Coon H.
        • Nurnberger J.I.
        • Li M.
        • Cantor R.M.
        • Minshew N.J.
        • Sutcliffe J.S.
        • Cook E.H.
        • Dawson G.
        • Buxbaum J.D.
        • Grant S.F.
        • Schellenberg G.D.
        • Geschwind D.H.
        • Hakonarson H.
        Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes.
        PLoS Genet. 2009; 5: e1000536
        • Buie T.
        • Campbell D.B.
        • Fuchs III, G.J.
        • Furuta G.T.
        • Levy J.
        • Vandewater J.
        • Whitaker A.H.
        • Atkins D.
        • Bauman M.L.
        • Beaudet A.L.
        • Carr E.G.
        • Gershon M.D.
        • Hyman S.L.
        • Jirapinyo P.
        • Jyonouchi H.
        • Kooros K.
        • Kushak R.
        • Levitt P.
        • Levy S.E.
        • Lewis J.D.
        • Murray K.F.
        • Natowicz M.R.
        • Sabra A.
        • Wershil B.K.
        • Weston S.C.
        • Zeltzer L.
        • Winter H.
        Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report.
        Pediatrics. 2010; 125: S1-S18
        • Butrus S.
        • Portela R.
        Ocular allergy: diagnosis and treatment.
        Ophthalmol. Clin. N. Am. 2005; 18 (v.): 485-492
        • Cai G.
        • Edelmann L.
        • Goldsmith J.E.
        • Cohen N.
        • Nakamine A.
        • Reichert J.G.
        • Hoffman E.J.
        • Zurawiecki D.M.
        • Silverman J.M.
        • Hollander E.
        • Soorya L.
        • Anagnostou E.
        • Betancur C.
        • Buxbaum J.D.
        Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT.
        BMC Med. Genomics. 2008; 1: 50
        • Cook Jr., E.H.
        • Scherer S.W.
        Copy-number variations associated with neuropsychiatric conditions.
        Nature. 2008; 455: 919-923
        • Crack P.J.
        • Bray P.J.
        Toll-like receptors in the brain and their potential roles in neuropathology.
        Immunol. Cell Biol. 2007; 85: 476-480
        • Curatolo P.
        • Napolioni V.
        • Moavero R.
        Autism spectrum disorders in tuberous sclerosis: pathogenetic pathways and implications for treatment.
        J. Child Neurol. 2010; 25: 873-880
        • Davoust N.
        • Vuaillat C.
        • Androdias G.
        • Nataf S.
        From bone marrow to microglia: barriers and avenues.
        Trends Immunol. 2008; 29: 227-234
        • De Miranda J.
        • Yaddanapudi K.
        • Hornig M.
        • Villar G.
        • Serge R.
        • Lipkin W.I.
        Induction of toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances.
        MBio. 2010; 1
        • Djukic M.
        • Mildner A.
        • Schmidt H.
        • Czesnik D.
        • Bruck W.
        • Priller J.
        • Nau R.
        • Prinz M.
        Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice.
        Brain. 2006; 129: 2394-2403
        • El-Fishawy P.
        • State M.W.
        The genetics of autism: key issues, recent findings, and clinical implications.
        Psychiatr. Clin. N. Am. 2010; 33: 83-105
        • Enstrom A.M.
        • Onore C.E.
        • Van de Water J.A.
        • Ashwood P.
        Differential monocyte responses to TLR ligands in children with autism spectrum disorders.
        Brain Behav. Immun. 2010; 24: 64-71
        • Gonzales M.L.
        • LaSalle J.M.
        The role of MeCP2 in brain development and neurodevelopmental disorders.
        Curr. Psychiatry Rep. 2010; 12: 127-134
        • Gregg J.P.
        • Lit L.
        • Baron C.A.
        • Hertz-Picciotto I.
        • Walker W.
        • Davis R.A.
        • Croen L.A.
        • Ozonoff S.
        • Hansen R.
        • Pessah I.N.
        • Sharp F.R.
        Gene expression changes in children with autism.
        Genomics. 2008; 91: 22-29
        • Hsiao E.Y.
        • Patterson P.H.
        Activation of the maternal immune system induces endocrine changes in the placenta via IL-6.
        Brain Behav. Immun. 2011; 4: 604-615
        • Jin S.Z.
        • Wu N.
        • Xu Q.
        • Zhang X.
        • Ju G.Z.
        • Law M.H.
        • Wei J.
        A study of circulating gliadin antibodies in schizophrenia among a Chinese population.
        Schizophr. Bull. 2010; ([Epub ahead of print])
        • Jonsson L.
        • Ljunggren E.
        • Bremer A.
        • Pedersen C.
        • Landen M.
        • Thuresson K.
        • Giacobini M.
        • Melke J.
        Mutation screening of melatonin-related genes in patients with autism spectrum disorders.
        BMC Med. Genomics. 2010; 3: 10
        • Jyonouchi H.
        Food allergy and autism spectrum disorders: is there a link?.
        Curr. Allergy Asthma Rep. 2009; 9: 194-201
        • Jyonouchi H.
        Autism spectrum disorders and allergy: observation from a pediatric allergy/immunology clinic.
        Expert. Rev. Clin. Immunol. 2010; 6: 397-411
        • Jyonouchi H.
        • Geng L.
        • Cushing-Ruby A.
        • Monteiro I.M.
        Aberrant responses to TLR agonists in pediatric IBD patients; the possible association with increased production of Th1/Th17 cytokines in response to candida, a luminal antigen.
        Pediatr. Allergy Immunol. 2010; 21: e747-e755
        • Jyonouchi H.
        • Geng L.
        • Cushing-Ruby A.
        • Quraishi H.
        Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study.
        J. Neuroinflammation. 2008; 5: 52
        • Jyonouchi H.
        • Geng L.
        • Ruby A.
        • Reddy C.
        • Zimmerman-Bier B.
        Evaluation of an association between gastrointestinal symptoms and cytokine production against common dietary proteins in children with autism spectrum disorders.
        J. Pediatr. 2005; 146: 605-610
        • Jyonouchi H.
        • Geng L.
        • Ruby A.
        • Zimmerman-Bier B.
        Dysregulated innate immune responses in young children with autism spectrum disorders: their relationship to gastrointestinal symptoms and dietary intervention.
        Neuropsychobiology. 2005; 51: 77-85
        • Jyonouchi H.
        • G L.
        • Ruby A.
        • Reddy C.
        Suboptimal responses to dietary intervention in children with autism spectrum disorders and Non-IgE mediated food allergy.
        in: Zhao L.B. Autism Research Advances. Nova Science Publishers, Inc, 2007: 169-184
        • Kim S.H.
        • Song J.Y.
        • Joo E.J.
        • Lee K.Y.
        • Ahn Y.M.
        • Kim Y.S.
        EGR3 as a potential susceptibility gene for schizophrenia in Korea.
        Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010; 153B: 1355-1360
        • Kimura A.
        • Kishimoto T.
        Th17 cells in inflammation.
        Int. Immunopharmacol. 2011; 11: 319-322
        • Kyogoku C.
        • Yanagi M.
        • Nishimura K.
        • Sugiyama D.
        • Morinobu A.
        • Fukutake M.
        • Maeda K.
        • Shirakawa O.
        • Kuno T.
        • Kumagai S.
        Association of calcineurin A gamma subunit (PPP3CC) and early growth response 3 (EGR3) gene polymorphisms with susceptibility to schizophrenia in a Japanese population.
        Psychiatry Res. 2011; 185: 16-19
        • Marchetto M.C.
        • Carromeu C.
        • Acab A.
        • Yu D.
        • Yeo G.W.
        • Mu Y.
        • Chen G.
        • Gage F.H.
        • Muotri A.R.
        A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells.
        Cell. 2010; 143: 527-539
        • Nassef M.
        • Shapiro G.
        • Casale T.B.
        Identifying and managing rhinitis and its subtypes: allergic and nonallergic components—a consensus report and materials from the Respiratory and Allergic Disease Foundation.
        Curr. Med. Res. Opin. 2006; 22: 2541-2548
        • Olson J.K.
        • Miller S.D.
        Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs.
        J. Immunol. 2004; 173: 3916-3924
        • Parihar A.
        • Eubank T.D.
        • Doseff A.I.
        Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death.
        J. Innate Immun. 2010; 2: 204-215
        • Ransohoff R.M.
        • Cardona A.E.
        The myeloid cells of the central nervous system parenchyma.
        Nature. 2010; 468: 253-262
        • Rodriguez M.
        • Alvarez-Erviti L.
        • Blesa F.J.
        • Rodriguez-Oroz M.C.
        • Arina A.
        • Melero I.
        • Ramos L.I.
        • Obeso J.A.
        Bone-marrow-derived cell differentiation into microglia: a study in a progressive mouse model of Parkinson's disease.
        Neurobiol. Dis. 2007; 28: 316-325
        • Rudan I.
        New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity.
        Psychiatr. Danub. 2010; 22: 190-192
        • Schendel D.
        • Rice C.
        • Cunniff C.
        The contribution of rare diseases to understanding the epidemiology of neurodevelopmental disabilities.
        Adv. Exp. Med. Biol. 2010; 686: 433-453
        • Serbina N.V.
        • Jia T.
        • Hohl T.M.
        • Pamer E.G.
        Monocyte-mediated defense against microbial pathogens.
        Annu. Rev. Immunol. 2008; 26: 421-452
        • Singh V.K.
        Phenotypic expression of autoimmune autistic disorder (AAD): a major subset of autism.
        Ann. Clin. Psychiatry. 2009; 21: 148-161
        • Toro R.
        • Konyukh M.
        • Delorme R.
        • Leblond C.
        • Chaste P.
        • Fauchereau F.
        • Coleman M.
        • Leboyer M.
        • Gillberg C.
        • Bourgeron T.
        Key role for gene dosage and synaptic homeostasis in autism spectrum disorders.
        Trends Genet. 2010; 26: 363-372
        • Urra X.
        • Villamor N.
        • Amaro S.
        • Gomez-Choco M.
        • Obach V.
        • Oleaga L.
        • Planas A.M.
        • Chamorro A.
        Monocyte subtypes predict clinical course and prognosis in human stroke.
        J. Cereb. Blood Flow Metab. 2009; 29: 994-1002
        • Vargas D.L.
        • Nascimbene C.
        • Krishnan C.
        • Zimmerman A.W.
        • Pardo C.A.
        Neuroglial activation and neuroinflammation in the brain of patients with autism.
        Ann. Neurol. 2005; 57: 67-81
        • Wang L.W.
        • Berry-Kravis E.
        • Hagerman R.J.
        Fragile X: leading the way for targeted treatments in autism.
        Neurotherapeutics. 2010; 7: 264-274
        • Yamamoto-Furusho J.K.
        • Podolsky D.K.
        Innate immunity in inflammatory bowel disease.
        World J. Gastroenterol. 2007; 13: 5577-5580
        • Yuan T.M.
        • Sun Y.
        • Zhan C.Y.
        • Yu H.M.
        Intrauterine infection/inflammation and perinatal brain damage: role of glial cells and Toll-like receptor signaling.
        J. Neuroimmunol. 2010; 229: 16-25