Antibodies against fetal brain in sera of mothers with autistic children

Published:December 19, 2007DOI:https://doi.org/10.1016/j.jneuroim.2007.11.004

      Abstract

      Serum antibodies in 100 mothers of children with autistic disorder (MCAD) were compared to 100 age-matched mothers with unaffected children (MUC) using as antigenic substrates human and rodent fetal and adult brain tissues, GFAP, and MBP. MCAD had significantly more individuals with Western immunoblot bands at 36 kDa in human fetal and rodent embryonic brain tissue. The density of bands was greater in fetal brain at 61 kDa. MCAD plus developmental regression had greater reactivity against human fetal brain at 36 and 39 kDa. Data support a possible complex association between genetic/metabolic/environmental factors and the placental transfer of maternal antibodies in autism.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams K.M.
        • Nelson J.L.
        Microchimerism: an investigative frontier in autoimmunity and transplantation.
        JAMA. 2004; 291: 1127-1131
      1. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. American Psychiatric Association, Washington, D.C.1994
        • Archelos J.J.
        • Hartung H.P.
        Pathogenetic role of autoantibodies in neurological diseases.
        Trends Neurosci. 2000; 23: 317-327
        • Bach J.F.
        Infections and autoimmune diseases.
        J. Autoimmun. 2005; 25: 74-80
        • Bauman M.L.
        Microscopic neuroanatomic abnormalities in autism.
        Pediatrics. 1991; 87: 791-796
        • Becker K.G.
        Autism, asthma, inflammation, and the hygiene hypothesis.
        Med. Hypotheses. 2007; 69: 731-740
        • Bianchi D.W.
        • Robert E.
        Gross lecture. Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy.
        J. Pediatr. Surg. 2007; 42: 12-18
        • Braunschweig D.A.
        • Ashwood P.
        • Van de Water J.A.
        • Hertz-Picciotto I.
        • Hansen R.
        • Croen L.
        Increased Prevalence of Maternal Autoantibodies Against Fetal Brain in Autism. International Meeting for Autism Research, Montreal, Canada2006
        • Cabanlit M.
        • Wills S.
        • Goines P.
        • Ashwood P.
        • Van de Water J.
        Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder.
        Ann. N. Y. Acad. Sci. 2007; 1107: 92-103
      2. Centers for disease control and prevention. Autism and developmental disabilities monitoring network surveillance year 2002 principal investigators.
        in: Prevalence of Autism Spectrum Disorders—Autism and Developmental Disabilities Monitoring Network, 14 Sites, United States, 2002. MMWR Surveill Summ. vol. 56. 2007: 12-28
        • Cohly H.H.
        • Panja A.
        Immunological findings in autism.
        Int. Rev. Neurobiol. 2005; 71: 317-341
        • Comi A.M.
        • Zimmerman A.W.
        • Frye V.H.
        • Law P.A.
        • Peeden J.N.
        Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism.
        J. Child Neurol. 1999; 14: 388-394
        • Courchesne E.
        • Carper R.
        • Akshoomoff N.
        Evidence of brain overgrowth in the first year of life in autism.
        Jama. 2003; 290: 337-344
        • Courchesne E.
        • Yeung-Courchesne R.
        • Press G.A.
        • Hesselink J.R.
        • Jernigan T.L.
        Hypoplasia of cerebellar vermal lobules VI and VII in autism.
        N. Engl. J. Med. 1988; 318: 1349-1354
        • Croen L.A.
        • Grether J.K.
        • Yoshida C.K.
        • Odouli R.
        • Van de Water J.
        Maternal autoimmune diseases, asthma, and allergies, and childhood autism spectrum disorders.
        Arch. Pediatr. Adolesc. Med. 2005; 159: 151-157
        • Dalton P.
        • Deacon R.
        • Blamire A.
        • Pike M.
        • McKinlay I.
        • Stein J.
        • Styles P.
        • Vincent A.
        Maternal neuronal antibodies associated with autism and a language disorder.
        Ann. Neurol. 2003; 53: 533-537
        • Fleming J.
        • Fabry Z.
        The hygiene hypothesis and multiple sclerosis.
        Ann Neurol. 2007; 61: 85-89
        • Gupta S.
        Immunological treatments for autism.
        J. Autism Dev. Disord. 2000; 30: 475-479
        • Korvatska E.
        • Van de Water J.
        • Anders T.F.
        • Gershwin M.E.
        Genetic and immunologic considerations in autism.
        Neurobiol. Dis. 2002; 9: 107-125
        • Lawler C.P.
        • Croen L.A.
        • Grether J.K.
        • Van de Water J.
        Identifying environmental contributions to autism: provocative clues and false leads.
        Ment. Retard. Dev. Disabil Res Rev. 2004; 10: 292-302
        • Lee L.C.
        • Zachary A.A.
        • Leffell M.S.
        • Newschaffer C.J.
        • Matteson K.J.
        • Tyler J.D.
        • Zimmerman A.W.
        HLA-DR4 in families with autism.
        Pediatr. Neurol. 2006; 35: 303-307
        • Lord C.
        • Risi S.
        • Lambrecht L.
        • Cook E.H.J.
        • Leventhal B.L.
        • DiLavore P.C.
        • Pickles A.
        • Rutter M.
        The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism.
        J. Autism Dev. Disord. 2000; 30: 205-223
        • Miyazaki K.
        • et al.
        Serum neurotrophin concentratins in autism and mental retardation: a pilot study.
        Brain Develop. 2004; 26: 292-295
        • Molloy C.A.
        • Morrow A.L.
        • Meinzen-Derr J.
        • Dawson G.
        • Bernier R.
        • Dunn M.
        • Hyman S.L.
        • McMahon W.M.
        • Goudie-Nice J.
        • Hepburn S.
        • Minshew N.
        • Rogers S.
        • Sigman M.
        • Spence M.A.
        • Tager-Flusberg H.
        • Volkmar F.R.
        • Lord C.
        Familial autoimmune thyroid disease as a risk factor for regression in children with Autism Spectrum Disorder: a CPEA Study.
        J. Autism Dev. Disord. 2006; 36: 317-324
        • Nelson K.B.
        • Grether J.K.
        • Croen L.A.
        • Dambrosia J.M.
        • Dickens B.F.
        • Jelliffe L.L.
        • Hansen R.L.
        • Phillips T.M.
        Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation.
        Ann. Neurol. 2001; 49: 597-606
        • Ozonoff S.
        • Williams B.J.
        • Landa R.
        Parental report of the early development of children with regressive autism: the delays-plus-regression phenotype.
        Autism. 2005; 9: 461-486
        • Pardo C.A.
        • Vargas D.L.
        • Zimmerman A.W.
        Immunity, neuroglia and neuroinflammation in autism.
        Int. Rev. Psychiatry. 2005; 17: 485-495
        • Plioplys A.V.
        • Greaves A.
        • Kazemi K.
        • Silverman E.
        Lymphocyte function in autism and Rett syndrome.
        Neuropsychobiology. 1994; 29: 12-16
        • Rapin I.
        Autism.
        N. Engl. J. Med. 1997; 337: 97-104
        • Raux M.
        • Finkielsztejn L.
        • Salmon-Ceron D.
        • Bouchez H.
        • Excler J.L.
        • Dulioust E.
        • Grouin J.M.
        • Sicard D.
        • Blondeau C.
        Development and standardization of methods to evaluate the antibody response to an HIV-1 candidate vaccine in secretions and sera of seronegative vaccine recipients.
        J. Immunol. Methods. 1999; 222: 111-124
        • Rogers T.
        • Kalaydjieva L.
        • Hallmayer J.
        • Petersen P.B.
        • Nicholas P.
        • Pingree C.
        • McMahon W.M.
        • Spiker D.
        • Lotspeich L.
        • Kraemer H.
        • McCague P.
        • Dimiceli S.
        • Nouri N.
        • Peachy T.
        • Yang J.
        • Hinds D.
        • Risch N.
        • Myers R.M.
        Exclusion of linkage to the HLA region in ninety multiplex sibships with autism.
        J. Autism Dev. Disord. 1999; 29: 195-201
        • Schopler E.
        • Reichler R.J.
        • Renner B.R.
        The Childhood Autism Rating Scale (CARS): for Diagnostic Screening and Classification of Autism. Irvington, New York1986: 63
        • Silva S.C.
        • Correia C.
        • Fesel C.
        • Barreto M.
        • Coutinho A.M.
        • Marques C.
        • Miguel T.S.
        • Ataide A.
        • Bento C.
        • Borges L.
        • Olifeira G.
        • Vicente A.M.
        Autoantibody repertoires to brain tissue in autism nuclear families.
        J. Neuroimmunol. 2004; 152: 176-182
        • Singer H.S.
        • Morris C.M.
        • Williams P.N.
        • Yoon D.Y.
        • Hong J.J.
        • Zimmerman A.W.
        Antibrain antibodies in children with autism and their unaffected siblings.
        J. Neuroimmunol. 2006; 178: 149-155
        • Singh V.K.
        • Rivas W.H.
        Prevalence of serum antibodies to caudate nucleus in autistic children.
        Neurosci. Lett. 2004; 355: 53-56
        • Singh V.K.
        • Warren R.
        • Averett R.
        • Ghaziuddin M.
        Circulating autoantibodies to neuronal and glial filament proteins in autism.
        Pediatr. Neurol. 1997; 17: 88-90
        • Singh V.K.
        • Warren R.P.
        • Odell J.D.
        • Warren W.L.
        • Cole P.
        Antibodies to myelin basic protein in children with autistic behavior.
        Brain Behav. Immun. 1993; 7: 97-103
        • Strachan D.P.
        Hay fever, hygiene, and household size.
        Br. Med. J. 1989; 299: 1259-1260
        • Sweeten T.L.
        • Bowyer S.L.
        • Posey D.J.
        • Halberstadt G.M.
        • McDougle C.J.
        Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders.
        Pediatrics. 2003; 112: e420
        • Torres A.R.
        • Maciulis A.
        • Stubbs E.G.
        • Cutler A.
        • Odell D.
        The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder.
        Hum. Immunol. 2002; 63: 311-316
        • Vercelli D.
        Mechanisms of the hygiene hypothesis—molecular and otherwise.
        Curr. Opin. Immunol. 2006; 18: 733-737
        • Vincent A.
        • Deacon R.
        • Dalton P.
        • Salmond C.
        • Blamire A.M.
        • Pendlebury S.
        • Johansen-Berg H.
        • Rajogopalan B.
        • Styles P.
        • Stein J.
        Maternal antibody-mediated dyslexia? Evidence for a pathogenic serum factor in a mother of two dyslexic children shown by transfer to mice using behavioural studies and magnetic resonance spectroscopy.
        J. Neuroimmunol. 2002; 130: 243-247
        • Zilbovicius M.
        • Garreau B.
        • Samson Y.
        • Remy P.
        • Barthelemy C.
        • Syrota A.
        • Lelord G.
        Delayed maturation of the frontal cortex in childhood autism.
        Am. J. Psychiatry. 1995; 152: 248-252
        • Zimmerman A.W.
        • Connors S.L.
        • Matteson K.J.
        • Lee L.C.
        • Singer H.S.
        • Castaneda J.A.
        • Pearce D.A.
        Maternal antibrain antibodies in autism.
        Brain Behav. Immun. 2007; 21: 351-357