Advertisement

CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions

Published:September 07, 2007DOI:https://doi.org/10.1016/j.jneuroim.2007.07.024

      Abstract

      CCL19 and CCL21 bind to CCR7, which is crucial for both inducing an immune response and establishing immunological tolerance. We report that in the normal human brain CCL19, but not CCL21, is transcribed, and detectable as a protein in tissue lysates and in cerebrospinal fluid. In both active and inactive multiple sclerosis (MS) lesions CCL19 transcripts were elevated. In cerebrospinal fluid from MS and OIND patients CCL19 protein was increased. In relapsing–remitting and secondary progressive MS patients CCL19 correlated with intrathecal IgG production. This study suggests that CCL19 plays a role in both the physiological immunosurveillance of the healthy CNS and the pathological maintenance of immune cells in the CNS of MS patients.

      Abbreviations:

      BBB (blood–brain barrier), CSF (cerebrospinal fluid), MS (multiple sclerosis), RR-MS (relapsing–remitting MS), PP-MS (primary progressive MS), SP-MS (secondary progressive MS), NIND (non-inflammatory neurological diseases), OIND (other inflammatory neurological diseases), PPIA (peptidyl-prolyl isomerase A (cyclophilin A).)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aloisi F.
        • Pujol-Borrell R.
        Lymphoid neogenesis in chronic inflammatory diseases.
        Nat. Rev., Immunol. 2006; 6: 205-217
        • Alt C.
        • Laschinger M.
        • Engelhardt B.
        Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis.
        Eur. J. Immunol. 2002; 32: 2133-2144
        • Antel J.
        • Bar-Or A.
        Roles of immunoglobulins and B cells in multiple sclerosis: from pathogenesis to treatment.
        J. Neuroimmunol. 2006; 180: 3-8
        • Babbe H.
        • Roers A.
        • Waisman A.
        • Lassmann H.
        • Goebels N.
        • Hohlfeld R.
        • Friese M.
        • Schroder R.
        • Deckert M.
        • Schmidt S.
        • Ravid R.
        • Rajewsky K.
        Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction.
        J. Exp. Med. 2000; 192: 393-404
        • Baekkevold E.S.
        • Yamanaka T.
        • Palframan R.T.
        • Carlsen H.S.
        • Reinholt F.P.
        • von Andrian U.H.
        • Brandtzaeg P.
        • Haraldsen G.
        The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment.
        J. Exp. Med. 2001; 193: 1105-1112
        • Banas B.
        • Wornle M.
        • Berger T.
        • Nelson P.J.
        • Cohen C.D.
        • Kretzler M.
        • Pfirstinger J.
        • Mack M.
        • Lipp M.
        • Grone H.J.
        • Schlondorff D.
        Roles of SLC/CCL21 and CCR7 in human kidney for mesangial proliferation, migration, apoptosis, and tissue homeostasis.
        J. Immunol. 2002; 168: 4301-4307
        • Bardi G.
        • Lipp M.
        • Baggiolini M.
        • Loetscher P.
        The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC.
        Eur. J. Immunol. 2001; 31: 3291-3297
        • Cepok S.
        • Jacobsen M.
        • Schock S.
        • Omer B.
        • Jaekel S.
        • Boddeker I.
        • Oertel W.H.
        • Sommer N.
        • Hemmer B.
        Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis.
        Brain. 2001; 124: 2169-2176
        • Cepok S.
        • Rosche B.
        • Grummel V.
        • Vogel F.
        • Zhou D.
        • Sayn J.
        • Sommer N.
        • Hartung H.P.
        • Hemmer B.
        Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis.
        Brain. 2005; 128: 1667-1676
        • Charo I.F.
        • Ransohoff R.M.
        The many roles of chemokines and chemokine receptors in inflammation.
        N. Engl. J. Med. 2006; 354: 610-621
        • Christopherson K.W.
        • Hood A.F.
        • Travers J.B.
        • Ramsey H.
        • Hromas R.A.
        Endothelial induction of the T-cell chemokine CCL21 in T-cell autoimmune diseases.
        Blood. 2003; 101: 801-806
        • Columba-Cabezas S.
        • Serafini B.
        • Ambrosini E.
        • Aloisi F.
        Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation.
        Brain Pathol. 2003; 13: 38-51
        • Corcione A.
        • Casazza S.
        • Ferretti E.
        • Giunti D.
        • Zappia E.
        • Pistorio A.
        • Gambini C.
        • Mancardi G.L.
        • Uccelli A.
        • Pistoia V.
        Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 11064-11069
        • Cyster J.G.
        Chemokines and cell migration in secondary lymphoid organs.
        Science. 1999; 286: 2098-2102
        • Engelhardt B.
        • Ransohoff R.M.
        The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms.
        Trends Immunol. 2005; 26: 485-495
        • Flügel A.
        • Berkowicz T.
        • Ritter T.
        • Labeur M.
        • Jenne D.E.
        • Li Z.
        • Ellwart J.W.
        • Willem M.
        • Lassmann H.
        • Wekerle H.
        Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis.
        Immunity. 2001; 14: 547-560
        • Frohman E.M.
        • Racke M.K.
        • Raine C.S.
        Multiple sclerosis—the plaque and its pathogenesis.
        N. Engl. J. Med. 2006; 354: 942-955
        • Giunti D.
        • Borsellino G.
        • Benelli R.
        • Marchese M.
        • Capello E.
        • Valle M.T.
        • Pedemonte E.
        • Noonan D.
        • Albini A.
        • Bernardi G.
        • Mancardi G.L.
        • Battistini L.
        • Uccelli A.
        Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS.
        J. Leukoc. Biol. 2003; 73: 584-590
        • Grant A.J.
        • Goddard S.
        • Ahmed-Choudhury J.
        • Reynolds G.
        • Jackson D.G.
        • Briskin M.
        • Wu L.
        • Hubscher S.G.
        • Adams D.H.
        Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease.
        Am. J. Pathol. 2002; 160: 1445-1455
        • Hafler D.A.
        Multiple sclerosis.
        J. Clin. Invest. 2004; 113: 788-794
        • Hemmer B.
        • Archelos J.J.
        • Hartung H.P.
        New concepts in the immunopathogenesis of multiple sclerosis.
        Nat. Rev., Neurosci. 2002; 3: 291-301
        • Hickey W.F.
        Basic principles of immunological surveillance of the normal central nervous system.
        Glia. 2001; 36: 118-124
        • Hickey W.F.
        • Kimura H.
        Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo.
        Science. 1988; 239: 290-292
        • Kim C.H.
        • Pelus L.M.
        • White J.R.
        • Broxmeyer H.E.
        Macrophage-inflammatory protein-3 beta/EBI1-ligand chemokine/CK beta-11, a CC chemokine, is a chemoattractant with a specificity for macrophage progenitors among myeloid progenitor cells.
        J. Immunol. 1998; 161: 2580-2585
        • Kivisäkk P.
        • Mahad D.J.
        • Callahan M.K.
        • Trebst C.
        • Tucky B.
        • Wei T.
        • Wu L.
        • Baekkevold E.S.
        • Lassmann H.
        • Staugaitis S.M.
        • Campbell J.J.
        • Ransohoff R.M.
        Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin.
        Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 8389-8394
        • Kivisäkk P.
        • Mahad D.J.
        • Callahan M.K.
        • Sikora K.
        • Trebst C.
        • Tucky B.
        • Wujek J.
        • Ravid R.
        • Staugaitis S.M.
        • Lassmann H.
        • Ransohoff R.M.
        Expression of CCR7 in multiple sclerosis: implications for CNS immunity.
        Ann. Neurol. 2004; 55: 627-638
        • Krumbholz M.
        • Theil D.
        • Derfuss T.
        • Rosenwald A.
        • Schrader F.
        • Monoranu C.M.
        • Kalled S.L.
        • Hess D.M.
        • Serafini B.
        • Aloisi F.
        • Wekerle H.
        • Hohlfeld R.
        • Meinl E.
        BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma.
        J. Exp. Med. 2005; 201: 195-200
        • Krumbholz M.
        • Theil D.
        • Cepok S.
        • Hemmer B.
        • Kivisakk P.
        • Ransohoff R.M.
        • Hofbauer M.
        • Farina C.
        • Derfuss T.
        • Hartle C.
        • Newcombe J.
        • Hohlfeld R.
        • Meinl E.
        Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment.
        Brain. 2006; 129: 200-211
        • Lassmann H.
        Multiple sclerosis pathology: evolution of pathogenetic concepts.
        Brain Pathol. 2005; 15: 217-222
        • Lassmann H.
        • Schmied M.
        • Vass K.
        • Hickey W.F.
        Bone marrow derived elements and resident microglia in brain inflammation.
        Glia. 1993; 7: 19-24
        • Lassmann H.
        • Raine C.S.
        • Antel J.
        • Prineas J.W.
        Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna.
        J. Neuroimmunol. 1998; 86: 213-217
        • Lo J.C.
        • Chin R.K.
        • Lee Y.
        • Kang H.S.
        • Wang Y.
        • Weinstock J.V.
        • Banks T.
        • Ware C.F.
        • Franzoso G.
        • Fu Y.X.
        Differential regulation of CCL21 in lymphoid/nonlymphoid tissues for effectively attracting T cells to peripheral tissues.
        J. Clin. Invest. 2003; 112: 1495-1505
        • Mahad D.
        • Callahan M.K.
        • Williams K.A.
        • Ubogu E.E.
        • Kivisakk P.
        • Tucky B.
        • Kidd G.
        • Kingsbury G.A.
        • Chang A.
        • Fox R.J.
        • Mack M.
        • Sniderman M.B.
        • Ravid R.
        • Staugaitis S.M.
        • Stins M.F.
        • Ransohoff R.M.
        Modulating CCR2 and CCL2 at the blood–brain barrier: relevance for multiple sclerosis pathogenesis.
        Brain. 2006; 129: 212-223
        • Meinl E.
        • Krumbholz M.
        • Hohlfeld R.
        B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation.
        Ann. Neurol. 2006; 59: 880-892
        • Menning A.
        • Hopken U.E.
        • Siegmund K.
        • Lipp M.
        • Hamann A.
        • Huehn J.
        Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets.
        Eur. J. Immunol. 2007; 37: 1575-1583
        • Muller G.
        • Hopken U.E.
        • Lipp M.
        The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity.
        Immunol. Rev. 2003; 195: 117-135
        • Nelson P.J.
        • Krensky A.M.
        Chemokines, chemokine receptors, and allograft rejection.
        Immunity. 2001; 14: 377-386
        • Omari K.M.
        • John G.R.
        • Sealfon S.C.
        • Raine C.S.
        CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis.
        Brain. 2005; 128: 1003-1015
        • Ozawa K.
        • Suchanek G.
        • Breitschopf H.
        • Bruck W.
        • Budka H.
        • Jellinger K.
        • Lassmann H.
        Patterns of oligodendroglia pathology in multiple sclerosis.
        Brain. 1994; 117: 1311-1322
        • Page G.
        • Lebecque S.
        • Miossec P.
        Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium.
        J. Immunol. 2002; 168: 5333-5341
        • Pashenkov M.
        • Soderstrom M.
        • Link H.
        Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation.
        J. Neuroimmunol. 2003; 135: 154-160
        • Prineas J.W.
        • Wright R.G.
        Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis.
        Lab. Invest. 1978; 38: 409-421
        • Ransohoff R.M.
        • Kivisäkk P.
        • Kidd G.
        Three or more routes for leukocyte migration into the central nervous system.
        Nat. Rev., Immunol. 2003; 3: 569-581
        • Rossi D.L.
        • Vicari A.P.
        • Franz-Bacon K.
        • McClanahan T.K.
        • Zlotnik A.
        Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3alpha and MIP-3beta.
        J. Immunol. 1997; 158: 1033-1036
        • Scapini P.
        • Laudanna C.
        • Pinardi C.
        • Allavena P.
        • Mantovani A.
        • Sozzani S.
        • Cassatella M.A.
        Neutrophils produce biologically active macrophage inflammatory protein-3alpha (MIP-3alpha)/CCL20 and MIP-3beta/CCL19.
        Eur. J. Immunol. 2001; 31: 1981-1988
        • Serafini B.
        • Rosicarelli B.
        • Magliozzi R.
        • Stille W.
        • Aloisi F.
        Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis.
        Brain Pathol. 2004; 14: 164-174
        • Serafini B.
        • Rosicarelli B.
        • Magliozzi R.
        • Stigliano E.
        • Capello E.
        • Mancardi G.L.
        • Aloisi F.
        Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells.
        J. Neuropathol. Exp. Neurol. 2006; 65: 124-141
        • Sorensen T.L.
        • Sellebjerg F.
        • Jensen C.V.
        • Strieter R.M.
        • Ransohoff R.M.
        Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis.
        Eur. J. Neurol. 2001; 8: 665-672
        • Sospedra M.
        • Martin R.
        Immunology of multiple sclerosis.
        Annu. Rev. Immunol. 2005; 23: 683-747
        • Tateyama M.
        • Fujihara K.
        • Misu T.
        • Feng J.
        • Onodera Y.
        • Itoyama Y.
        Expression of CCR7 and its ligands CCL19/CCL21 in muscles of polymyositis.
        J. Neurol. 2006; 249: 158-165
        • Theil D.
        • Farina C.
        • Meinl E.
        Differential expression of CD150 (SLAM) on monocytes and macrophages in chronic inflammatory contexts: abundant in Crohn's disease, but not in multiple sclerosis.
        J. Clin. Pathol. 2005; 58: 110-111
        • Tsai H.H.
        • Frost E.
        • To V.
        • Robinson S.
        • Ffrench-Constant C.
        • Geertman R.
        • Ransohoff R.M.
        • Miller R.H.
        The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration.
        Cell. 2002; 110: 373-383
        • Wekerle H.
        • Linington C.
        • Lassmann H.
        • Meyermann R.
        Cellular immune reactivity within the CNS.
        Trends Neurosci. 1986; 9: 271-276
        • Weninger W.
        • Carlsen H.S.
        • Goodarzi M.
        • Moazed F.
        • Crowley M.A.
        • Baekkevold E.S.
        • Cavanagh L.L.
        • von Andrian U.H.
        Naive T cell recruitment to nonlymphoid tissues: a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis.
        J. Immunol. 2003; 170: 4638-4648
        • Williams K.
        • Alvarez X.
        • Lackner A.A.
        Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system.
        Glia. 2001; 36: 156-164
        • Worbs T.
        • Forster R.
        A key role for CCR7 in establishing central and peripheral tolerance.
        Trends Immunol. 2007; 28: 274-280
        • Worbs T.
        • Mempel T.R.
        • Bolter J.
        • von Andrian U.H.
        • Forster R.
        CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo.
        J. Exp. Med. 2007; 204: 489-495
        • Yin J.L.
        • Shackel N.A.
        • Zekry A.
        • McGuinness P.H.
        • Richards C.
        • Putten K.V.
        • McCaughan G.W.
        • Eris J.M.
        • Bishop G.A.
        Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I.
        Immunol. Cell Biol. 2001; 79: 213-221
        • Zou Y.R.
        • Kottmann A.H.
        • Kuroda M.
        • Taniuchi I.
        • Littman D.R.
        Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development.
        Nature. 1998; 393: 595-599