Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis

  • Priya Chaudhary
    Corresponding author. Tel.: +1 503 494 7321; fax: +1 503 494 7242.
    Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
    Search for articles by this author
  • Gail H. Marracci
    Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA

    Research Service, Department of Veterans Affairs Medical Center, Portland, OR, USA
    Search for articles by this author
  • Dennis N. Bourdette
    Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA

    Research Service, Department of Veterans Affairs Medical Center, Portland, OR, USA
    Search for articles by this author


      Lipoic acid (LA) suppresses and treats murine experimental autoimmune encephalomyelitis (EAE), which models multiple sclerosis. However, the mechanisms by which LA mediates its effects in EAE are only partially known. In the present study, LA (25, 50 and 100 μg/ml) inhibited upregulation of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) stimulated cultured brain endothelial cells. Immunohistochemical analysis of spinal cords from SJL mice that had received LA (100 mg/kg/day) following immunization to induce EAE exhibited markedly reduced expression of ICAM-1 and VCAM-1 compared with that of EAE mice receiving saline. Co-localization analysis showed that ICAM-1 and VCAM-1 expression increased over endothelial cells (staining positive for von Willebrand factor, vWF) in EAE and that LA decreased the expression levels to that observed in naïve mice. Spinal cords from mice receiving LA had significantly reduced inflammation (decreased CD4 and CD11b staining) as compared to EAE mice that received saline. Overall, our data suggest that the anti-inflammatory effects of LA in EAE may be partly due to inhibition of ICAM-1 and VCAM-1 expression by central nervous system (CNS) endothelial cells.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Alter A.
        • Duddy M.
        • Hebert S.
        • Biernacki K.
        • Prat A.
        • Antel J.P.
        • Yong V.W.
        • Nuttall R.K.
        • Pennington C.J.
        • Edwards D.R.
        • Bar-Or A.
        Determinants of human B cell migration across brain endothelial cells.
        J. Immunol. 2003; 170: 4497-4505
        • Andersen G.N.
        • Caidahl K.
        • Kazzam E.
        • Petersson A.S.
        • Waldenstrom A.
        • Mincheva-Nilsson L.
        • Rantapaa-Dahlqvist S.
        Correlation between increased nitric oxide production and markers of endothelial activation in systemic sclerosis: findings with the soluble adhesion molecules E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1.
        Arthritis Rheum. 2000; 43: 1085-1093
        • Bauer J.
        • Ruuls S.R.
        • Huitinga I.
        • Dijkstra C.D.
        The role of macrophage subpopulations in autoimmune disease of the central nervous system.
        Histochem. J. 1996; 28: 83-97
        • Benveniste E.N.
        Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis.
        J. Mol. Med. 1997; 75: 165-173
        • Bierhaus A.
        • Chevion S.
        • Chevion M.
        • Hofmann M.
        • Quehenberger P.
        • Illmer T.
        • Luther T.
        • Berentshtein E.
        • Tritschler H.
        • Muller M.
        • Wahl P.
        • Ziegler R.
        • Nawroth P.P.
        Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells.
        Diabetes. 1997; 46: 1481-1490
        • Biernacki K.
        • Prat A.
        • Blain M.
        • Antel J.P.
        Regulation of cellular and molecular trafficking across human brain endothelial cells by Th1- and Th2-polarized lymphocytes.
        J. Neuropathol. Exp. Neurol. 2004; 63: 223-232
        • Biewenga G.P.
        • Haenen G.R.
        • Bast A.
        The pharmacology of the antioxidant lipoic acid.
        Gen. Pharmacol. 1997; 29: 315-331
        • Campbell J.J.
        • Hedrick J.
        • Zlotnik A.
        • Siani M.A.
        • Thompson D.A.
        • Butcher E.C.
        Chemokines and the arrest of lymphocytes rolling under flow conditions.
        Science. 1998; 279: 381-384
        • Cannella B.
        • Raine C.S.
        The adhesion molecule and cytokine profile of multiple sclerosis lesions.
        Ann. Neurol. 1995; 37: 424-435
        • Cannella B.
        • Cross A.H.
        • Raine C.S.
        Adhesion-related molecules in the central nervous system. Upregulation correlates with inflammatory cell influx during relapsing experimental autoimmune encephalomyelitis.
        Lab. Invest. 1991; 65: 23-31
        • Chavarria A.
        • Alcocer-Varela J.
        Is damage in central nervous system due to inflammation?.
        Autoimmun. Rev. 2004; 3: 251-260
        • Cross A.H.
        • Cannella B.
        • Brosnan C.F.
        • Raine C.S.
        Homing to central nervous system vasculature by antigen-specific lymphocytes. I. Localization of 14C-labeled cells during acute, chronic, and relapsing experimental allergic encephalomyelitis.
        Lab. Invest. 1990; 63: 162-170
        • Dopp J.M.
        • Breneman S.M.
        • Olschowka J.A.
        Expression of ICAM-1, VCAM-1, l-selectin, and leukosialin in the mouse central nervous system during the induction and remission stages of experimental allergic encephalomyelitis.
        J. Neuroimmunol. 1994; 54: 129-144
        • Droogan A.G.
        • McMillan S.A.
        • Douglas J.P.
        • Hawkins S.A.
        Serum and cerebrospinal fluid levels of soluble adhesion molecules in multiple sclerosis: predominant intrathecal release of vascular cell adhesion molecule-1.
        J. Neuroimmunol. 1996; 64: 185-191
        • Duzhak T.
        • Emerson M.R.
        • Chakrabarty A.
        • Alterman M.A.
        • Levine S.M.
        Analysis of protein induction in the CNS of SJL mice with experimental allergic encephalomyelitis by proteomic screening and immunohistochemistry.
        Cell. Mol. Biol. (Noisy-le-grand). 2003; 49: 723-732
        • Gearing A.J.
        • Newman W.
        Circulating adhesion molecules in disease.
        Immunol. Today. 1993; 14: 506-512
        • Grabovsky V.
        • Feigelson S.
        • Chen C.
        • Bleijs D.A.
        • Peled A.
        • Cinamon G.
        • Baleux F.
        • Arenzana-Seisdedos F.
        • Lapidot T.
        • van Kooyk Y.
        • Lobb R.R.
        • Alon R.
        Subsecond induction of alpha4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions.
        J. Exp. Med. 2000; 192: 495-506
        • Hartung H.P.
        • Archelos J.J.
        • Zielasek J.
        • Gold R.
        • Koltzenburg M.
        • Reiners K.H.
        • Toyka K.V.
        Circulating adhesion molecules and inflammatory mediators in demyelination: a review.
        Neurology. 1995; 45: S22-S32
        • Hickey W.F.
        Migration of hematogenous cells through the blood–brain barrier and the initiation of CNS inflammation.
        Brain Pathol. 1991; 1: 97-105
        • Hofmann N.
        • Lachnit N.
        • Streppel M.
        • Witter B.
        • Neiss W.F.
        • Guntinas-Lichius O.
        • Angelov D.N.
        Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1 alpha by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats.
        BMC Immunol. 2002; 3: 11
        • Jander S.
        • Pohl J.
        • Gillen C.
        • Schroeter M.
        • Stoll G.
        Vascular cell adhesion molecule-1 mRNA is expressed in immune-mediated and ischemic injury of the rat nervous system.
        J. Neuroimmunol. 1996; 70: 75-80
        • Jeong E.M.
        • Moon C.H.
        • Kim C.S.
        • Lee S.H.
        • Baik E.J.
        • Moon C.K.
        • Jung Y.S.
        Cadmium stimulates the expression of ICAM-1 via NF-kappaB activation in cerebrovascular endothelial cells.
        Biochem. Biophys. Res. Commun. 2004; 320: 887-892
        • Kirk S.
        • Frank J.A.
        • Karlik S.
        Angiogenesis in multiple sclerosis: is it good, bad or an epiphenomenon?.
        J. Neurol. Sci. 2004; 217: 125-130
        • Laschinger M.
        • Engelhardt B.
        Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro.
        J. Neuroimmunol. 2000; 102: 32-43
        • Lee S.J.
        • Benveniste E.N.
        Adhesion molecule expression and regulation on cells of the central nervous system.
        J. Neuroimmunol. 1999; 98: 77-88
        • Leeuwenberg J.F.
        • Smeets E.F.
        • Neefjes J.J.
        • Shaffer M.A.
        • Cinek T.
        • Jeunhomme T.M.
        • Ahern T.J.
        • Buurman W.A.
        E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro.
        Immunology. 1992; 77: 543-549
        • Lindsey J.W.
        • Steinman L.
        Competitive PCR quantification of CD4, CD8, ICAM-1, VCAM-1, and MHC class II mRNA in the central nervous system during development and resolution of experimental allergic encephalomyelitis.
        J. Neuroimmunol. 1993; 48: 227-234
        • Madri J.A.
        • Graesser D.
        Cell migration in the immune system: the evolving inter-related roles of adhesion molecules and proteinases.
        Dev. Immunol. 2000; 7: 103-116
        • Marracci G.H.
        • Jones R.E.
        • McKeon G.P.
        • Bourdette D.N.
        Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis.
        J. Neuroimmunol. 2002; 131: 104-114
        • Marracci G.H.
        • McKeon G.P.
        • Marquardt W.E.
        • Winter R.W.
        • Riscoe M.K.
        • Bourdette D.N.
        Alpha lipoic acid inhibits human T-cell migration: implications for multiple sclerosis.
        J. Neurosci. Res. 2004; 78: 362-370
        • Monaco C.
        • Andreakos E.
        • Kiriakidis S.
        • Feldmann M.
        • Paleolog E.
        T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases.
        Curr. Drug Targets Inflamm. Allergy. 2004; 3: 35-42
        • Montesano R.
        • Pepper M.S.
        • Mohle-Steinlein U.
        • Risau W.
        • Wagner E.F.
        • Orci L.
        Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene.
        Cell. 1990; 62: 435-445
        • Morini M.
        • Roccatagliata L.
        • Dell'Eva R.
        • Pedemonte E.
        • Furlan R.
        • Minghelli S.
        • Giunti D.
        • Pfeffer U.
        • Marchese M.
        • Noonan D.
        • Mancardi G.
        • Albini A.
        • Uccelli A.
        Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis.
        J. Neuroimmunol. 2004; 148: 146-153
        • Navikas V.
        • Link H.
        Review: cytokines and the pathogenesis of multiple sclerosis.
        J. Neurosci. Res. 1996; 45: 322-333
        • Noseworthy J.H.
        • Lucchinetti C.
        • Rodriguez M.
        • Weinshenker B.G.
        Multiple sclerosis.
        N. Engl. J. Med. 2000; 343: 938-952
        • Prat A.
        • Biernacki K.
        • Lavoie J.F.
        • Poirier J.
        • Duquette P.
        • Antel J.P.
        Migration of multiple sclerosis lymphocytes through brain endothelium.
        Arch. Neurol. 2002; 59: 391-397
        • Raine C.S.
        • Cannella B.
        • Duijvestijn A.M.
        • Cross A.H.
        Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination.
        Lab. Invest. 1990; 63: 476-489
        • Raivich G.
        • Banati R.
        Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease.
        Brain Res. Brain Res. Rev. 2004; 46: 261-281
        • Ransohoff R.M.
        • Kivisakk P.
        • Kidd G.
        Three or more routes for leukocyte migration into the central nervous system.
        Nat. Rev. Immunol. 2003; 3: 569-581
        • Scott G.S.
        • Kean R.B.
        • Fabis M.J.
        • Mikheeva T.
        • Brimer C.M.
        • Phares T.W.
        • Spitsin S.V.
        • Hooper D.C.
        ICAM-1 upregulation in the spinal cords of PLSJL mice with experimental allergic encephalomyelitis is dependent upon TNF-alpha production triggered by the loss of blood–brain barrier integrity.
        J. Neuroimmunol. 2004; 155: 32-42
        • Sellebjerg F.
        • Sorensen T.L.
        Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system.
        Brain Res. Bull. 2003; 61: 347-355
        • Selmaj K.
        • Raine C.S.
        • Cannella B.
        • Brosnan C.F.
        Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions.
        J. Clin. Invest. 1991; 87: 949-954
        • Sikorski E.E.
        • Hallmann R.
        • Berg E.L.
        • Butcher E.C.
        The Peyer's patch high endothelial receptor for lymphocytes, the mucosal vascular addressin, is induced on a murine endothelial cell line by tumor necrosis factor-alpha and IL-1.
        J. Immunol. 1993; 151: 5239-5250
        • Smith A.R.
        • Shenvi S.V.
        • Widlansky M.
        • Suh J.H.
        • Hagen T.M.
        Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress.
        Curr. Med. Chem. 2004; 11: 1135-1146
        • Sobel R.A.
        • Mitchell M.E.
        • Fondren G.
        Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system.
        Am. J. Pathol. 1990; 136: 1309-1316
        • Song L.
        • Pachter J.S.
        Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins.
        In Vitro Cell. Dev. Biol., Anim. 2003; 39: 313-320
        • Sospedra M.
        • Martin R.
        Immunology of multiple sclerosislow asterisk.
        Annu. Rev. Immunol. 2005; 23: 683-747
        • Suzuki Y.J.
        • Aggarwal B.B.
        • Packer L.
        Alpha-lipoic acid is a potent inhibitor of NF-kappa B activation in human T cells.
        Biochem. Biophys. Res. Commun. 1992; 189: 1709-1715
        • Traugott U.
        • Lebon P.
        Multiple sclerosis: involvement of interferons in lesion pathogenesis.
        Ann. Neurol. 1988; 24: 243-251
        • Washington R.
        • Burton J.
        • Todd III, R.F.
        • Newman W.
        • Dragovic L.
        • Dore-Duffy P.
        Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis.
        Ann. Neurol. 1994; 35: 89-97
        • Wekerle H.
        • Engelhardt B.
        • Risau W.
        • Meyermann R.
        Interaction of T lymphocytes with cerebral endothelial cells in vitro.
        Brain Pathol. 1991; 1: 107-114
        • Wisniewski H.M.
        • Lossinsky A.S.
        Structural and functional aspects of the interaction of inflammatory cells with the blood–brain barrier in experimental brain inflammation.
        Brain Pathol. 1991; 1: 89-96
        • Yadav V.
        • Marracci G.
        • Lovera J.
        • Woodward W.
        • Bogardus K.
        • Marquardt W.
        • Shinto L.
        • Morris C.
        • Bourdette D.
        Lipoic acid in multiple sclerosis: a pilot study.
        Mult. Scler. 2005; 11: 159-165
        • Zhang W.J.
        • Frei B.
        Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells.
        FASEB J. 2001; 15: 2423-2432