Advertisement
Research Article| Volume 116, ISSUE 2, P188-195, June 01, 2001

Download started.

Ok

A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system

      Abstract

      The perivascular (PVM) and meningeal (MM) macrophages form a distinct population of resident CNS cells, selectively expressing the mature macrophage marker ED2 in the rat. In order to elucidate the role of the PVM and MM in rats during normal functioning of the brain and pathology, we have developed a strategy employing a single intraventricular injection of clodronate liposomes. This resulted in a complete depletion of the PVM and MM. Clodronate liposomes did not deplete the microglial cells. In other parts of the body, a temporal and mild depletion effect was observed, which was restored within 1 week. Detailed analysis of the elimination and repopulation kinetics of the PVM and MM revealed a slow repopulation of the CNS, starting at 14 days post depletion. This selective depletion method of the PVM and MM will enable us to get direct insight in their functions during normal and pathologic conditions of the CNS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Neuroimmunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Angelov D.N.
        • Neiss W.F.
        • Streppel M.
        • Walther M.
        • Guntinas-Lichius O.
        • Stennert E.
        ED2-positive perivascular cells act as neuronophages during delayed neuronal loss in the facial nucleus of the rat.
        Glia. 1996; 16: 129-139
        • Angelov D.N.
        • Walther M.
        • Streppel M.
        • Guntinas-Lichius O.
        • Neiss W.F.
        The cerebral perivascular cells.
        Adv. Anat. Embryol. Cell Biol. 1998; (Springer): 147
        • Angelov D.N.
        • Walther M.
        • Streppel M.
        • Guntinas-Lichius O.
        • van Dam A.-M.
        • Stennert E.
        • Neiss W.F.
        ED2-positive perivascular phagocytes produce interleukin-1b during delayed neuronal loss in the facial nucleus of the rat.
        J. Neurosci. Res. 1998; 54: 820-827
        • Bauer J.
        • Berkenbosch F.
        • van Dam A.-M.
        • Dijkstra C.D.
        Demonstration of interleukin-1 beta in lewis rat brain during experimental allergic encephalomyelitis by immunocytochemistry at the light and ultrastructural level.
        J. Neuroimmunol. 1993; 48: 13-21
        • Bauer J.
        • Huitinga I.
        • Zhao W.
        • Lassmann H.
        • Hickey W.F.
        • Dijkstra C.D.
        The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis.
        Glia. 1995; 15: 437-446
        • Becher B.
        • Prat A.
        • Antel J.P.
        Brain-immune connection: immuno-regulatory properties of CNS-resident cells.
        Glia. 2000; 29: 293-304
        • Brent L.
        Pathophysiology of the Blood–Brain Barrier. Elsevier, 1990
        • Burstone M.S.
        Histochemical comparison of naphtol-phosphates for the demonstration of phosphatases.
        J. Nat. Cancer Inst. 1958; 20: 601
        • Claassen E.
        Post-formation fluorescent labelling of liposomal membranes. In vivo detection, localisation and kinetics.
        J. Immunol. Methods. 1992; 147: 231-240
        • Cserr H.F.
        • Knopf P.M.
        Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view.
        Immunol. Today. 1992; 13: 507-512
        • Dijkstra C.D.
        • Döpp E.A.
        • van den Berg T.K.
        • Damoiseaux J.G.M.C.
        Monoclonal antibodies against rat macrophages.
        J. Immunol. Methods. 1994; 174: 21-23
        • Elmquist J.K.
        • Breder C.D.
        • Sherin J.E.
        • Scammell T.E.
        • Hickey W.F.
        • Dewitt D.
        • Saper C.B.
        Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages.
        J. Comp. Neurol. 1997; 381: 119-129
        • Gaytan F.
        • Bellido C.
        • Morales C.
        • Garcia M.
        • van Rooijen N.
        • Aguilar E.
        In vivo manipulation (depletion versus activation) of testicular macrophages: central and local effects.
        J. Endocrinol. 1996; 150: 57-65
        • Graeber M.B.
        • Streit W.J.
        Microglia: immune network in the CNS.
        Brain Pathol. 1990; 1: 2-5
        • Graeber M.B.
        • Streit W.J.
        • Kreutzberg G.W.
        Identity of ED2-positive perivascular cells in rat brain.
        J. Neurosci. Res. 1989; 22: 103-106
        • Hickey W.F.
        • Kimura H.
        Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo.
        Science. 1988; 239: 290-292
        • Hickey W.F.
        • Vass K.
        • Lassmann H.
        Bone marrow-derived elements in the central nervous system: an Immunohistochemical and ultrastructural survey of rat chimeras.
        J. Neuropathol. Exp. Neurol. 1992; 51: 246-256
        • Huitinga I.
        • van Rooijen N.
        • de Groot C.J.A.
        • Uitdehaag B.M.J.
        • Dijkstra C.D.
        Suppression of experimental allergic encephalomyelitis in lewis rats after elimination of macrophages.
        J. Exp. Med. 1990; 172: 1025-1033
        • Kida S.
        • Steart P.H.
        • Zhang E.-T.
        • Weller R.O.
        Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages.
        Acta Neuropathol. 1993; 85: 646-652
        • Lassmann H.
        • Zimpric F.
        • Vass K.
        • Hickey W.F.
        Microglial cells are a component of the perivascular glia limitans.
        J. Neurosci. Res. 1991; 28: 236-243
        • Lassmann H.
        • Schmied M.
        • Vass K.
        • Hickey W.F.
        Bone marrow derived elements and resident microglia in brain inflammation.
        Glia. 1993; 7: 19-24
        • Mato M.
        • Ookawara S.
        • Sakamoto A.
        • Aikawa E.
        • Ogawa T.
        • Mitsuhashi U.
        • Masuzawa T.
        • Suzuki H.
        • Honda M.
        • Yazaki Y.
        • Watanabe E.
        • Luoma J.
        • Yla-Herttuala S.
        • Fraser I.
        • Gordon S.
        • Kodama T.
        Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.
        Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 3269-3274
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego1986
        • Pouvreau I.
        • Zech J.-C.
        • Thillaye-Goldenberg B.
        • Naud M.-C.
        • van Rooijen N.
        • de Kozak Y.
        Effect of macrophage depletion by liposomes containing dichloromethylene-diphosphonate on endotoxin-induced uveitis.
        J. Neuroimmunol. 1998; 86: 171-181
        • Robinson A.P.
        • White T.M.
        • Mason D.W.
        Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MCR OX-42, the latter recognizing complement receptor type 3.
        Immunology. 1986; 57: 239-247
        • Streit W.J.
        • Graeber M.B.
        • Kreutzberg G.W.
        Expression off Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury.
        Exp. Neurol. 1989; 105: 115-126
        • Thepen T.
        • van Rooijen N.
        • Kraal G.
        Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice.
        J. Exp. Med. 1989; 170: 499-509
        • Trostdorf F.
        • Bruck W.
        • Schmitz-Salue M.
        • Stuertz K.
        • Hopkins S.J.
        • van Rooijen N.
        • Huitinga I.
        • Nau R.
        Reduction of meningeal macrophages does not decrease migration of granulocytes into the CSF and brain parenchyma in experimental pneumococcal meningitis.
        J. Neuroimmunol. 1999; 99: 205-210
        • Umezawa F.A.E.Y.
        Liposome targeting to mouse brain: mannose as a recognition marker.
        Biochem. Biophys. Res. Comm. 1988; 153: 1038
        • van Rooijen N.
        • Sanders A.
        Manipulation of Kupffer cells by liposome encapsulated clodronate and propamidine synergistic and antagonistic effects of liposomal phospholipids and drugs.
        Int. J. Pharmacol. 1989; 162: 51-58
        • van Rooijen N.
        • Sanders A.
        Liposome mediated depletion of macrophages:mechanism of action, preparation of liposomes and application.
        J. Immunol. Methods. 1994; 174: 83-93
        • van Rooijen N.
        • Sanders A.
        Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid.
        Hepatology. 1996; 23: 1239-1243
        • van Rooijen N.
        • Sanders A.
        Elimination, blocking, and activation of macrophages: three of a kind?.
        J. Leukocyte Biol. 1997; 62: 702-709
        • van Rooijen N.
        • Sanders A.
        • van den Berg T.K.
        Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine.
        J. Immunol. Methods. 1996; 193: 93-99
        • van Rooijen N.
        • Bakker J.
        • Sanders A.
        Transient suppression of macrophage functions by liposome-encapsulated drugs.
        TIBTECH. 1997; 15: 178-185
        • Wekerle H.
        • Linington H.
        • Lassmann H.
        • Meyermann R.
        Cellular immune reactivity within the CNS.
        TINS. 1986; : 271-277
        • Weller R.O.
        • Engelhardt B.
        • Phillips M.J.
        Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways.
        Brain Pathol. 1996; 6: 275-288
        • Wijburg O.L.C.
        • Dinatale S.
        • Vadolas J.
        • van Rooijen N.
        • Stugnell R.A.
        Alveolar macrophages regulate the induction of primary cytoxic T-lymphocyte responses during influenza virus infection.
        J. Virol. 1997; 71: 9450-9457
        • Zhang E.T.
        • Richards H.K.
        • Kida S.
        • Weller R.O.
        Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain.
        Acta Neuropathol. 1992; 83: 233-239